Advertisement

Spectrometry of Chars-Structure Studies

  • R. A. Friedel
  • H. L. Retcofsky

Abstract

Studies of the very complex processes involved in pyrolytic reactions can provide insight into the mechanisms of natural geological processes such as coalification. Of primary interest in such studies is (1) the actual identification of the pyrolysis products, or, in lieu of this, information on the types of structures present, and (2) the effects of variables such as temperature and length of pyrolysis time on the structures of the products. Qualitative and quantitative comparisons of the pyrolysis products can then be made with similar natural products. In investigations of the structure and origin of coals, parallel studies of pyrolytic materials have provided considerable information about the coalification process.

Keywords

Electron Spin Resonance Infrared Spectrum Electron Spin Resonance Spectrum Pyrolysis Product Isotopic Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Fischer and H. Schrader, Ges. Abhandl. Kenntnis Kohle 208, 551 (1920).Google Scholar
  2. 2.
    F. Bergius, Naturwiss. 16, 1 (1928).CrossRefGoogle Scholar
  3. 3.
    E. Berl and A. Schmidt, A. Liebigs Ann. 493, 97 (1932).CrossRefGoogle Scholar
  4. 4.
    R. C. Smith and H. C. Howard, J. Am. Chem. Soc. 59, 234 (1937).CrossRefGoogle Scholar
  5. 5.
    R. A. Friedel, in: “Applied Infrared Spectroscopy,” ( D. N. Kendall, ed.), John Wiley & Sons, New York (1966), pp. 312–343.Google Scholar
  6. 6.
    K. Scheringa, Pharm. Weekblad 58, 937 (1921).Google Scholar
  7. 7.
    G. Roberts, Anal. Chem. 29, 911 (1957).CrossRefGoogle Scholar
  8. 8.
    R. A. Durie and J. Szewczyk, Spectrochim. Acta. 15, 593 (1959).CrossRefGoogle Scholar
  9. 9.
    H. Tschamler, private communication.Google Scholar
  10. 10.
    W. W. Coblentz, “Investigations of Infrared Spectra,” Carnegie Institution of Washington, Washington, D.C., (1905), (1906), and (1908), 642 pp. Republished jointly by The Coblentz Society and the Perkin-Elmer Corp. (1962).Google Scholar
  11. 11.
    C. G. Cannon and G. B. B. M. Sutherland, Trans. Faraday Soc. 41, 279 (1945).CrossRefGoogle Scholar
  12. 12.
    M. Orchin, C. Golumbic, J. E. Anderson, and H. H. Storch, Bureau of Mines Bull. 505 (1951), 15 pp.Google Scholar
  13. 13.
    R. A. Friedel and M. G. Pelipetz, J. Opt. Soc. Am. 43, 1051 (1953).CrossRefGoogle Scholar
  14. 14.
    D. Hadzi, Acad. Sci. Art. Sloven., Class III, Ser. A, (Ljubljana) 3, 108 (1951).Google Scholar
  15. 15.
    R. R. Gordon, W. N. Adams, and G. I. Jenkins, Nature 170, 317 (1952).CrossRefGoogle Scholar
  16. 16.
    C. G. Cannon, Nature 171, 308 (1953).CrossRefGoogle Scholar
  17. 17.
    G. Bergman, G. Huck, J. Karweil, and H. Luther, Brennstoff-Chem. 35, 175 (1954).Google Scholar
  18. 18.
    H. A. van Vucht, B. J. Rietveld, and D. W. van Krevelen, Fuel 34, 50 (1955).Google Scholar
  19. 19.
    J. K. Brown, J. Chem. Soc. (London) 1955, 744.Google Scholar
  20. 20.
    R. A. Friedel and J. A. Queiser, Anal. Chem. 28, 22 (1956).CrossRefGoogle Scholar
  21. 21.
    S. Fujii, Fuel 42, 17, 341 (1963).Google Scholar
  22. 22.
    J. D. Brooks, R. A. Durie, S. Sternhell, Austral. J. Appl. Sci. 9, 63 (1958).Google Scholar
  23. 23.
    R. A. Friedel, Nature 179, 1237 (1957).CrossRefGoogle Scholar
  24. 24.
    R. A. Friedel and J. A. Queiser, Fuel, 38, 369 (1959).Google Scholar
  25. 25.
    R. A. Friedel, Nature 201, 811 (1964).CrossRefGoogle Scholar
  26. 26.
    A. G. Sharkey, Jr., G. Wood, and R. A. Friedel, A. G. Sharkey, Jr., G. Wood, J. L. Shultz, I. Wender, and R. A. Friedel, Fuel 38, 315 (1959)Google Scholar
  27. A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel, Fuel 40, 423 (1961)Google Scholar
  28. R. A. Friedel, J. L. Shultz, and A. G. Sharkey, Jr., Fuel 47, 403 (1968).Google Scholar
  29. 27a.
    D. J. E. Ingram and J. E. Bennett, Phil. Mag. 45, 545 (1954).Google Scholar
  30. 27b.
    J. Uebersfeld, A. Étienne, and J. Combrisson, Nature 174, 614 (1954).CrossRefGoogle Scholar
  31. 28.
    F. C. Stehling and K. W. Bartz, J. Chem. Phys. 34, 1076 (1961).CrossRefGoogle Scholar
  32. 29.
    H. L. Retcofsky, J. M. Stark, and R. A. Friedel, Anal. Chem. 40, 1699 (1968).CrossRefGoogle Scholar
  33. 30.
    F. Bergius, Z. Angew. Chem. 34, 341 (1921).CrossRefGoogle Scholar
  34. 31.
    J. J. Gerards, D. W. van Krevelen, and H. I. Waterman, Second Intl. Conf. on Coal Science, The Netherlands, 1957.Google Scholar
  35. 32.
    M. G. Pelipetz and R. A. Friedel, Fuel 38, 8 (1959).Google Scholar
  36. 33.
    M. Teichmueller and R. Teichmueller, in: “Coal Science” (R. F. Gould, ed.), Adv. Chem. Series No. 55, American Chemical Society, Washington, D.C. (1966), p. 133.Google Scholar
  37. 34.
    J. Karweil, Deutsch Z. Geol. Ges. 107, 132 (1956).Google Scholar
  38. 35.
    W. Francis, “Coal,” E. Arnold Ltd., London (1961), p. 573.Google Scholar
  39. 36.
    R. A. Friedel and H. L. Retcofsky, “Proc. 5th Carbon Conf.” (Pennsylvania State Univ.), Pergamon Press, London (1963), Vol. 2, pp. 149–165.Google Scholar
  40. 37.
    T. Urbanski, W. Hofman, T. Ostrowski, and M. Witanowski, Bull. Acad. Polon. Sci., Ser. Sci. Chim., Geol. Geogr. 7, 861 (1959).Google Scholar
  41. 38.
    T. Urbanski, W. Hofman, T. Ostrowski, and M. Witanowski, Bull. Acad. Polon. Sci., Ser. Sci. Chim., Geol. Geogr. 7, 851 (1959).Google Scholar
  42. 39.
    S. Fujii and F. Yokoyama, J Fuel Soc. (Japan) 37, 643 (1958).Google Scholar
  43. 40.
    R. A. Friedel, in: “Applied Infrared Spectroscopy” ( D. N. Kendall, ed.), John Wiley & Sons, New York (1966), p. 321.Google Scholar
  44. 41.
    R. A. Friedel, R. A. Durie, and Y. Shewchyk, Carbon 5, 559 (1967).CrossRefGoogle Scholar
  45. 42.
    G. J. Karabatsos, J. Org. Chem. 25, 315 (1960).Google Scholar
  46. 43.
    S. Pinchas, D. Samuel, and M. Weiss-Broday, J. Chem. Soc. (London) 1961, 2382.Google Scholar
  47. 44.
    M. Halman and S. Pinchas, J. Chem. Soc. (London) 1958, 1703.Google Scholar
  48. 45.
    E. D. Becker, E. Charney, and T. Anno, J. Chem. Phys. 42, 942 (1965).CrossRefGoogle Scholar
  49. 46.
    S. A. Francis, J. Chem. Phys. 19, 505 (1951).Google Scholar
  50. 47.
    R. S. Rasmussen, D. D. Tunnicliff, and R. R. Brattain, J. Am. Chem. Soc. 71, 1068 (1949).CrossRefGoogle Scholar
  51. 48.
    A. Sieglitz and O. Horn, Chem. Ber. 84, 607 (1951).CrossRefGoogle Scholar
  52. 49.
    R. A. Durie, Y. Shewchyk, and R. A. Friedel, Spectrochim. Acta 24A, 1543 (1968).CrossRefGoogle Scholar
  53. 50.
    R. A. Friedel, “Proc. 4th Carbon Conf.” (Univ. of Buffalo), Pergamon Press, New York (1960), pp. 321–336.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • R. A. Friedel
    • 1
  • H. L. Retcofsky
    • 1
  1. 1.Pittsburgh Coal Research CenterUS Department of the Interior, Bureau of MinesPittsburghUSA

Personalised recommendations