Advertisement

Infrared Interferometry—Emission Spectra in the Middle-Infrared Region

  • Kee H. Rhee
  • Lauren R. Cousins

Abstract

The advantages of interference spectroscopy have now been well established, following initial work by Fellgett,(1) Strong,(2) and others. Among the principal advantages of interferometers for spectroscopic work is the remarkable gain in sensitivity due to a simultaneous measurement of all spectral frequencies, independent of spectral slit width, and also due to a high throughput. However, the method requires a posteriori computation of the spectrum by a Fourier transformation from the measured interferogram. This transformation(3) can be a tremendous mathematical task, one that is feasible only with the aid of modern high-speed computers.

Keywords

Wave Analyzer Optical Transformation Thermoplastic Resin Audio Frequency Spectral Slit Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Fellgett, Thesis, The University of Cambridge (1951).Google Scholar
  2. 2.
    J. Strong, J. Opt. Soc. Am. 47, 354 (1957).CrossRefGoogle Scholar
  3. 3.
    L. Mertz, “Transformation in Optics,” John Wiley & Sons, New York (1965).Google Scholar
  4. 4.
    L. C. Block and A. S. Zachor, Appl. Optics 3, 209 (1964).CrossRefGoogle Scholar
  5. 5.
    M. J. D. Low and I. Coleman, Spectrochimica Acta 22, 369 (1966).CrossRefGoogle Scholar
  6. 6.
    M. J. D. Low, L. Abrams, and I. Coleman, Chem. Commun. 1965, 389.Google Scholar
  7. 7.
    M. J. D. Low, and I. Coleman, Appl. Optics 5, 1453 (1966).CrossRefGoogle Scholar
  8. 8.
    M. J. D. Low and J. C. McManus, Chem. Commun. 1967, 1166.Google Scholar
  9. 9.
    M. J. D. Low and S. K. Freeman, Anal. Chem 39, 194 (1967).CrossRefGoogle Scholar
  10. 10.
    M. J. D. Low and F. D. Clancy, Environ. Sci. Tech. 1, 73 (1967).CrossRefGoogle Scholar
  11. 11.
    Gary Horlick, Appl. Spectry. 22, 617 (1968).CrossRefGoogle Scholar
  12. 12.
    Varian Associates, C-1024 Time-Averaging Computer; Palo Alto, California.Google Scholar
  13. 13.
    Block Engineering Company, Cambridge, Massachusetts.Google Scholar
  14. 14.
    K. H. Rhee and L. R.Cousins, unpublished work.Google Scholar
  15. 15.
    T. R. Kozlowski, Appl. Optics 7, 795 (1968).CrossRefGoogle Scholar
  16. 16.
    G. W. Stroke and A. T. Funkhouser, Physics Letters 16, 272 (1965).CrossRefGoogle Scholar
  17. 17.
    G. W. Stroke, Physica 33, 253 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Kee H. Rhee
    • 1
  • Lauren R. Cousins
    • 1
  1. 1.Gulf Research & Development CompanyPittsburghUSA

Personalised recommendations