Regulation of Plasma Flow and Other Functions of the Renal Papilla in Hypertension

  • Mukul C. Ganguli


Following the demonstration of a countercurrent multiplier system within the renal medulla as a mechanism for urinary concentration, a great deal of attention has been focused on the importance of the medullary circulation in the concentrating process and on the factors affecting this part of the renal circulation (Hargitay and Kuhn, 1951; Wirz et al., 1951).


Plasma Flow Interstitial Cell Renal Medulla Cortical Blood Flow Renal Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendshorst, W. J., and Beierwaltes, W. H. 1979, Renal and nephron hemodynamics in spontaneously hypertensive rats, Am. J. Physiol. 236: F246.PubMedGoogle Scholar
  2. Arendshorst, W. J., Finn, W. F., and Gottschalk, C. W., 1975, Autoregulation of blood flow in the rat kidney, Am. J. Physiol. 228: 127.PubMedGoogle Scholar
  3. Atherton, J. C., Hai, M. A., and Thomas, S., 1968a, The time course of changes in renal tissue composition during mannitol diuresis in the rat, J. Physiol. 197: 411.PubMedGoogle Scholar
  4. Atherton, J. C., Hai, M. A., and Thomas, S., 1968b, The time course of changes in renal tissue composition during water diuresis in the rat, J. Physiol. 197: 429.PubMedGoogle Scholar
  5. Aukland, K., 1966, Study of renal circulation with inert gas; measurements in tissue, Proceedings of the 3rd International Congress on Nephrology (J. S. Handler, ed.), Karger, Basel, pp. 188–200.Google Scholar
  6. Azar, S., Tobian, L., and Ishii, M., 1971, Effect of varying levels of dietary Na on sodium in papilla and on the number of papillary interstitial cell granules, Fed. Proc. Fed. Am. Soc. Exp. Biol. 30: 609 (abstr).Google Scholar
  7. Azar, S., Johnson, M. A., Bruno, L., and Tobian, L., 1976, Single nephron dynamics in the Kyoto hypertensive and normotensive rat, Proc. Int. Symp. Spontaneously Hypertensive Rat, 2nd, Newport Beach, CA, DHEW Publication No. (NIH) 77–1179, U.S. Government Printing Office, Washington, D.C.Google Scholar
  8. Ben-Ishay, D., Knudsen, K. D., and Dahl, L. K., 1967, Renal function studies in the early stage of salt hypertension in rats, Proc. Soc. Exp. Biol. Med. 125: 575.Google Scholar
  9. Berliner, R. W., Levinsky, N. G., Davidson, D. G., and Eden, M., 1958, Dilution and concentration of the urine and the action of antidiuretic hormone, Am. J. Med. 24: 730.PubMedCrossRefGoogle Scholar
  10. Bing, J., and Wiberg, B., 1958, Localization of renin in the kidney, Acta. Pathol. Microbiol. Scand. 44: 138.PubMedCrossRefGoogle Scholar
  11. Bray, G. A., 1960, Freezing point depression of rat kidney slices during water diuresis and anti-diuresis, Am. J. Physiol. 199: 1211.Google Scholar
  12. Comai, K., Prose, P., Farber, S. J., and Paulsrud, J. R., 1974, Correlation of renal medullary prostaglandin content and renal interstitial cell lipid droplets, Prostaglandins 6: 375.PubMedCrossRefGoogle Scholar
  13. Comai, K., Farber, S. J., and Paulsrud, J. R., 1975, Analyses of renal medullary lipid droplets from normal, hydronephrotic, and indomethacin treated rabbits, Lipids 10: 555.PubMedCrossRefGoogle Scholar
  14. Dahl, L. K., Heine, M., and Tassinari, L., 1962, Effect of chronic salt ingestion; evidence that genetic factors play an important role in susceptibility to experimental hypertension, J. Exp. Med. 115: 1173.PubMedCrossRefGoogle Scholar
  15. Diezi, J., Michoud, P., Aceves, J., and Giebisch, G., 1973, Micropuncture study of electrolyte transport across papillary collecting duct of the rat, Am. J. Physiol. 224: 623.PubMedGoogle Scholar
  16. Dunn, M. J., Howe, D., and Harrison, M., 1976, Renal prostaglandin synthesis in the spontaneously hypertensive rat, J. Clin. Invest. 58: 862.PubMedCrossRefGoogle Scholar
  17. Ganguli, M., and Tobian, L., 1974, Does the kidney autoregulate papillary plasma flow in chronic postsalt hypertension? Am. J. Physiol. 226: 330.PubMedGoogle Scholar
  18. Ganguli, M., and Tobian, L., 1978, Renal papillary plasma flow in Goldblatt and DOCA hypertension, Circulation 58:II-212 (abstr).Google Scholar
  19. Ganguli, M., Tobian, L., and Dahl, L., 1976, Low renal papillary plasma flow in both Dahl and Kyoto rats with spontaneous hypertension, Circ. Res. 39: 337.PubMedGoogle Scholar
  20. Ganguli, M., Tobian, L., O’Donnell, M., and Azar, S., 1977a, Plasma flow and the sodium concentration in renal papilla in young and adult Kyoto hypertensive rats (SHR rats), Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 531 (abstr).Google Scholar
  21. Ganguli, M., Tobian, L., Azar, S., and O’Donnell, M., 1977b, Evidence that prostaglandin synthesis inhibitors increase the concentration of sodium and chloride in rat renal papilla, Circ. Res. 40 (Suppl. I): 135.Google Scholar
  22. Girndt, J., and Ochwadt, B., 1969, Durchblutung des Nierenmarks, Gesamtnierendurchblutung und cortico-medulläre Gradienten beim experimentellen renalen Hochdruck der Ratte, Pflügers Arch. 313: 30.PubMedCrossRefGoogle Scholar
  23. Gomez, D. M., 1951, Evaluation of renal resistance with special reference to changes in essential hypertension, J. Clin. Invest. 30: 1143.PubMedCrossRefGoogle Scholar
  24. Grangsjo, G., and Wolgast, M., 1972, The pressure—flow relationship in renal cortical and medullary circulation, Acta Physiol. Scand. 85: 228.PubMedCrossRefGoogle Scholar
  25. Hargitay, B., and Kuhn, W., 1951, Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere, Z. Elektrochem. 55: 539.Google Scholar
  26. Heller, J., and Horacek, V., 1977, Autoregulation of renal blood flow in the rat, Pflügers Arch. 370: 81.PubMedCrossRefGoogle Scholar
  27. Hinshaw, L. B., 1964, Mechanism of renal autoregulation: Role of tissue pressure and description of multifactor hypothesis, Circ. Res. 14–15 (Suppl. I): 120.Google Scholar
  28. Ishii, M., and Tobian, L., 1969, Interstitial cell granules in renal papilla and the solute com- position of renal tissue in rats with Goldblatt hypertension, J. Lab. Clin. Med. 74: 47.PubMedGoogle Scholar
  29. Johnston, H. H., Herzog, J. P., and Lawler, D. P., 1967, Effect of prostaglandin E, on renal hemodynamics, sodium and water excretion, Am. J. Physiol. 213: 939.PubMedGoogle Scholar
  30. Kramer, K., Thurau, D., Deetjen, P., 1960, Hämodynamik des Nierenmarks. Capilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshematokrit und 02-Verbrauch des Nierenmarks in situ, Arch. Ges. Physiol. 270: 251.CrossRefGoogle Scholar
  31. Leary, W. P., Ledingham, J. G., and Vane, J. R., 1974, Impaired prostaglandin release from the kidneys of salt-loaded and hypertensive rats, Prostaglandins 7: 425.PubMedCrossRefGoogle Scholar
  32. Lee, J. B., 1972, Natriuretic “hormone” and the renal prostaglandins, Prostaglandins 1: 55.PubMedCrossRefGoogle Scholar
  33. Lilienfield, L. S., Rose, J. C., and Lassen, N. A., 1958, Diverse distribution of red cells and albumin in the dog kidney, Circ. Res. 6: 810.PubMedGoogle Scholar
  34. Lilienfield, L. S., Maganzini, H. G., and Bauer, M. H., 1961, Blood flow in the renal medulla, Circ. Res. 9: 614.PubMedGoogle Scholar
  35. Lowenstein, J., Beranbaum, E. R., Chasis, H., and Baldwin, D. S., 1970, Intrarenal pressure and exaggerated natriuresis in essential hypertension, Clin. Sci. 38: 359.PubMedGoogle Scholar
  36. Loyning, E. W., 1971, Effect of reduced perfusion pressure on intrarenal distribution of blood flow in dogs, Acta Physiol. Scand. 83: 191.PubMedCrossRefGoogle Scholar
  37. Mandal, A. K., Frohlich, E. D., Chrysant, K., Pfeffer, M. A., Yunice, A., and Nordquist, J. A., 1974, Ultrastructural analysis of renal papillary interstitial cell of spontaneously hypertensive rats, J. Lab. Clin. Med. 83: 256.PubMedGoogle Scholar
  38. Martinez-Maldonado, M., Tsaparas, N., Eknoyan, G., and Suki, W. N., 1972, Renal actions of prostaglandins: Comparison with acetylcholine and volume expansion, Am. J. Physiol. 222: 1147.PubMedGoogle Scholar
  39. Miyamoto, J., and Gordon, S., 1970, The cortical and medullary blood flows of the isolated dog’s kidney, Jpn. J. Physiol. 20: 584.PubMedCrossRefGoogle Scholar
  40. Moffat, D. B., 1967, The fine structure of the blood vessels of the renal medulla with particular reference to the control of medullary circulation, J. Ultrastruct. Res. 19: 532.PubMedCrossRefGoogle Scholar
  41. Muehrcke, R. C., Mandat, A. K., Epstein, M., and Volini, F. I., 1969, Cytoplasmic granularity of the renal medullary interstitial cells in experimental hypertension, J. Lab. Clin. Med. 73: 299.PubMedGoogle Scholar
  42. Muirhead, E. E., Germain, G., Leach, B. E., Pitcock, J. A., Stephenson, P., Brooks, B., Brosius, W. L., Daniels, E. G., and Hinman, J. W., 1972, Production of renomedullary prostaglandins by renomedullary interstitial cells grown in tissue culture, Circ. Res. 31 (Suppl. II): 161.PubMedGoogle Scholar
  43. Nishiyama, K., Nishiyama, A., and Frohlich, E. D., 1976, Regional blood flow in normotensive and spontaneously hypertensive rats, Am. J. Physiol. 230: 691.PubMedGoogle Scholar
  44. Ochwadt, B., 1956, Zur selbstseuerung des Nierenkreislaufes, Pflügers Arch. Ges. Physiol. 262: 207.CrossRefGoogle Scholar
  45. Peart, W. S., 1959, Renin and hypertension, Ergebn. Physiol. 50: 409.PubMedGoogle Scholar
  46. Pugsley, D. J., Beilin, L. J., and Peto, R., 1975, Renal prostaglandin synthesis in the Goldblatt hypertensive rat, Circ. Res. 36–37 (Suppl. I): 81.Google Scholar
  47. Saikia, T. C., 1965, Composition of the renal cortex and medulla of rats during water diuresis and antidiuresis, Q. J. Exp. Physiol. 50: 146.Google Scholar
  48. Selkurt, E. E., 1951, Effects of pulse pressure and mean arterial pressure modifications on renal hemodynamics and electrolyte and water excretion, Circulation 4: 541.PubMedGoogle Scholar
  49. Sirois, P., and Gagnon, D. J., 1974, Release of renomedullary prostaglandins in normal and hypertensive rats, Experientia 30: 1418.PubMedCrossRefGoogle Scholar
  50. Solez, K., Kramer, E. C., Fox, J. A., and Heptinstall, R. H., 1974, Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure, Kidney Int. 6: 24.PubMedCrossRefGoogle Scholar
  51. Sonnenberg, H., 1974, Medullary collecting duct function in antidiuretic and in salt or water diuretic rats, Am. J. Physiol. 226: 501.PubMedGoogle Scholar
  52. Stein, J. H., 1976, The renal circulation, in: The Kidney ( B. M. Brenner and F. C. Rector, eds.), Saunders, Philadelphia, p. 234.Google Scholar
  53. Stein, J. H., Kirschenbaum, M. A., Bay, W. H., Osgood, R. W., Ferris, T. F., 1975, Role of the collecting duct in the regulation of sodium balance, Circ. Res. 36–37 (Suppl I): 119.Google Scholar
  54. Stern, M. D., Bowen, P. D., Parma, R., Osgood, R. W., Bowman, R. L., and Stein, J. H., 1979, Measurement of renal cortical and medullary blood flow by laser-doppler spectroscopy in the rat, Am. J. Physiol. 236: F80.PubMedGoogle Scholar
  55. Stokes, J. B., and Kokko, J. P., 1977, Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule, J. Clin. Invest. 59: 1099.PubMedCrossRefGoogle Scholar
  56. Thurau, K., 1964, Renal hemodynamics, Am. J. Med. 36: 698.PubMedCrossRefGoogle Scholar
  57. Thurau, K., and Schneermann, J., 1965, Die Natriumkonzentration and den Makula densa Zellen als regulierender Faktor ftir das Glomerulusfiltrat, KIM. Wochenschr. 43: 410.CrossRefGoogle Scholar
  58. Thurau, K., Deetjen, P., and Kramer, K., 1960a, Hämodynamik des Nierenmarks. II. Mitteilung. Wechselbeziehung zwischen vascularem und tubularem Gegenstromsystem bei arteriellen Drucksteigerungen, Wasserdiurese und osmotischer Diurese, Pflügers Arch. Ges. Physiol. 270: 270.CrossRefGoogle Scholar
  59. Thurau, K., Sugiura, T., and Lilienfield, L. S., 1960b, Micropuncture of renal vasa recta in hydropenic hamsters, Clin. Res. 8: 383.Google Scholar
  60. Thurau, K., Schneermann, J., Nagi, J., Horster, W., and Wahl, M., 1967, Composition of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apparatus, Circ. Res. 20–21 (Suppl. II): 79.Google Scholar
  61. Tobian, L., 1972, A viewpoint concerning the enigma of hypertension, Am. J. Med. 52: 595.PubMedCrossRefGoogle Scholar
  62. Tobian, L., and Azar, S., 1971, Antihypertensive and other functions of the renal papilla, Trans. Assoc. Am. Physicians 84: 281.PubMedGoogle Scholar
  63. Tobian, L., and Ishii, M., 1969, Interstitial cell granules and solutes in renal papilla in post-Goldblatt hypertension, Am. J. Physiol. 217: 1699.PubMedGoogle Scholar
  64. Tobian, L., and O’Donnell, M., 1976, Renal prostaglandins in relation to sodium regulation and hypertension, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35: 2388.Google Scholar
  65. Tobian, L., Ishii, M., Duke, M., 1969, Relationship of cytoplasmic granules in renal papillary interstitial cells to “post-salt” hypertension, J. Lab. Clin. Med. 73: 309.PubMedGoogle Scholar
  66. Tobian, L., O’Donnell, M., Smith, P., 1974a, Intrarenal prostaglandin levels during normal and high sodium intake, Circ. Res. 34–35 (Suppl. I): 83.Google Scholar
  67. Tobian, L., Johnson, M. A., Lange, J., Magraw, S., 1974b, Effect of varying perfusion pressure on the output of sodium and renin and the vascular resistance in kidneys of rats with “post-salt” hypertension and Kyoto spontaneous hypertension, Circ. Res. 36–37(Suppl. I):162.Google Scholar
  68. Tobian, L., Lange, J., Azar, S., Iwai, J., Koop, D., Coffee, K., and Johnson, M. A., 1978a, Reduction of natriuretic capacity and renin release in isolated, blood-perfused kidneys of Dahl hypertension-prone rats, Circ. Res. 43 (Suppl. I): 92.Google Scholar
  69. Tobian, L., O’Donnell, M., and Ganguli, M., 1978b, Relationship of prostaglandins and sodium in renal papilla in Kyoto hypertensive rats and during high sodium diets, Trans. Assoc. Am. Physicians 91: 204.PubMedGoogle Scholar
  70. Vander, A. J., 1968, Direct effects of prostaglandin on renal function and renin release in anesthesized dog, Am. J. Physiol. 214: 218.PubMedGoogle Scholar
  71. Van Dorp, D., 1971, Recent developments in the biosynthesis and analyses of prostaglandin, Ann. N.Y. Acad. Sci. 180: 181.Google Scholar
  72. Waugh, W. H., 1964, Myogenic nature of autoregulation of renal flow in the absence of blood corpuscles, Circ. Res. 14–15 (Suppl. I): 156.Google Scholar
  73. Wirz, H., Hargitay, B., and Kuhn, W., 1951, Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie, Heiv. Physiol. Pharmacol. Acta 9: 196.Google Scholar
  74. Wolgast, M., 1968, Studies on the regional blood flow with P32-labelled red cells and small beta-sensitive semiconductor detectors, Acta Physiol. Scand. Suppl. 313: 1.PubMedGoogle Scholar
  75. Zanszen, F. H. A., and Nugteren, D. H., 1971, Histochemical localization of prostaglandin synthetase, Histochemie 27: 159.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Mukul C. Ganguli
    • 1
  1. 1.Hypertension Section, Department of Internal MedicineUniversity of Minnesota Hospital and School of MedicineMinneapolisUSA

Personalised recommendations