Fatty Acid Composition and Depot Function of Lipid Droplet Triacylglycerols in Renomedullary Interstitial Cells

  • Inge Norby Bojesen


Although the renin—angiotensin system is known to play an important role in renal hypertension, data have accumulated suggesting that a renal factor besides this system and besides sodium balance is responsible for blood pressure regulation. The question of whether this factor is a vasopressor or a vasdepressor substance has been much discussed. Several lines of evidence have been presented to support the theory that it has a hypotensive action. The theory that hypertension could result from a deficiency of such a vasodepressor substance has recently been supported by studies of Dietz et al. (1978) on the reversibility of experimental renal hypertension.


Fatty Acid Composition Arachidonic Acid Lipid Droplet Interstitial Cell Renal Medulla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aeberhard, E., and Menkes, J. H., 1968, Biosynthesis of long chain fatty acids by subcellular particles of mature brain, J. Biot. Chem. 243: 3834.Google Scholar
  2. Änggård, E., Bohman, S.-O., Griffin, J. E., Larsson, C., and Maunsbach, A. B., 1972, Subcellular localization of the prostaglandin system in the rabbit renal papilla, Acta Physiol. Scand. 84: 231.PubMedCrossRefGoogle Scholar
  3. Atherton, J. C., Hai, M. A., and Thomas, S., 1968, The time course of changes in renal tissue composition during water diuresis in the rat, J. Physiol. 197: 429.PubMedGoogle Scholar
  4. Atherton, J. C., Green, R., and Thomas, S., 1970, Effects of 0.9% saline infusion on urinary and renal tissue composition in the hydropaenic normal and hydrated conscious rat, J. Physiol. 210: 45.PubMedGoogle Scholar
  5. Berl, T., Raz, A., Wald, H., Horowitz, J., and Czaczkes, W., 1977, Prostaglandin synthesis inhibition and the action of vasopressin: Studies in man and rat, Am. J. Physiol. 232: F529.PubMedGoogle Scholar
  6. Bernanke, D., and Epstein, F. H., 1965, Metabolism of the renal medulla, Am. J. Physiol. 208: 541.PubMedGoogle Scholar
  7. Blomstrand, R., 1966, Fatty acid synthesis in human lymphocytes, Acta Chem. Scand. 20: 1122.PubMedCrossRefGoogle Scholar
  8. Bohman, S.-O., 1974, The ultrastructure of the renal medulla as observed after improved fixation methods, J. Ultrastruct. Res. 47: 329.PubMedCrossRefGoogle Scholar
  9. Bohman, S.-O., and Jensen, P. K. A., 1976, Morphometric studies on the liquid droplets of the interstitial cells of the renal medulla in different states of diuresis, J. Ultrastruct. Res. 55: 182.PubMedCrossRefGoogle Scholar
  10. Bohman, S.-O., and Maunsbach, A. B., 1972, Ultrastructure and biochemcial properties of subcellular fractions from rat renal medulla, J. Ultrastruct. Res. 38: 225.PubMedCrossRefGoogle Scholar
  11. Bojesen, I., 1974a, Quantitative and qualitative analyses of isolated lipid droplets from interstitial cells in renal papillae from various species, Lipids 9: 835.PubMedCrossRefGoogle Scholar
  12. Bojesen, I., 1974b, Interconversion of lipids in renal papillae, Proceedings of the 17th International Conference on the Biochemistry of Lipids, Milan (September 1974 ), p. 27.Google Scholar
  13. Bojesen, I., 1980a, In vitro and in vivo lipogenesis of the rat renal papillae from glucose, Biochem. Biophys. Acta (in press).Google Scholar
  14. Bojesen, I., 1980b, The influence of urea upon lipogenesis in renal papillae of rats, Lipids (in press).Google Scholar
  15. Bojesen, I., Bojesen, E., and Capito, K., 1976, In vitro and in vivo synthesis of long-chain fatty acids from [1–14C]acetate in the renal papillae from rats, Biochem. Biophys. Acta 424: 8.PubMedGoogle Scholar
  16. Brett, D., Howling, D., Morris, L. J., and James, A. T., 1971, Specificity of the fatty acid desaturases: The conversion of saturated to monoenoic acid, Arch. Biochem. Biophys. 143: 535.PubMedCrossRefGoogle Scholar
  17. Bulger, R. E., and Trump, B., 1966, Fine structure of the rat renal papilla, Am. J. Anat. 118: 685.PubMedCrossRefGoogle Scholar
  18. Carney, J. A., and Walker, B. L., 1972, Ovarian lipids from normal and essential fatty aciddeficient rats during oestrus and dioestrus, Comp. Biochem. Physiol. 41: 137.Google Scholar
  19. Comai, K., Prose, P., and Farber, S. J., 1974, Correlation of renal medullary prostaglandin content and renal interstitial cell lipid droplets, Prostaglandins 6: 375.PubMedCrossRefGoogle Scholar
  20. Comai, K., Farber, S. J., and Paulsrud, J. R., 1975, Analyses of renal medullary lipid droplets from normal, hydronephrotic and indomethacin treated rabbits, Lipids 10: 555.PubMedCrossRefGoogle Scholar
  21. Danon, A., Knapp, H. R., Oelz, O., and Oates, J. A., 1978, Stimulation of prostaglandin biosynthesis in the renal papilla by hypertonic mediums, Am. J. Physiol. 234: F64.PubMedGoogle Scholar
  22. Diaugustine, R. P., Schaefer, J. M., and Fouts, J. R., 1973, Hepatic lipid droplets; Isolation, morphology and composition, Biochem. J. 132: 323.PubMedGoogle Scholar
  23. Dietz, R., Mast, G. J., Schomig, A., Luth, J. B., and Rascher, W., 1978, Reversal of renal hypertension: Effects on renin, salt and water balance, Klin. Wochenschr. 56 (Suppl. I): 23.PubMedCrossRefGoogle Scholar
  24. Elsbach, P., and Farrow, S., 1969, Metabolsim of phospholipids by phagocytic cells IV. Cellular triacylglycerols as a source of fatty acids for lecithin synthesis during phagocytosis, Biochim. Biophys. Acta 176: 438.PubMedGoogle Scholar
  25. Fejes-Tóth, G., Magyar, A., and Walter, J., 1977, Renal response to vasopressin after inhibition of prostaglandin synthesis, Am. J. Physiol. 232: F416.PubMedGoogle Scholar
  26. Gidez, L. I., and Feller, E., 1969, Effect of the stress of unilateral adrenalectomy on the depletion of individual cholesteryl esters in the rat adrenal, J. Lipid Res. 10: 656.PubMedGoogle Scholar
  27. Guder, W. G., and Schmidt, U., 1976, Enzymatic organization of carbohydrate metabolism along the nephron, in: Proceedings of the 6th International Congress on Nephrology, Florence 1975 ( S. Giovannetti, V. Bonomini, and G. D’Amico, eds), Karger, Basel, p. 187.Google Scholar
  28. Joist, J. H., Dolezel, G., Lloyd, J. V., and Mustard, J. F., 1976, Phospholipid transfer between plasma and platelets in vitro, Blood 48: 199.PubMedGoogle Scholar
  29. Kean, E. L., Adams, P. H., Winters, R. W., and Davies, R. E., 1961, Energy metabolism of the renal medulla, Biochim. Biophys. Acta 54: 474.PubMedCrossRefGoogle Scholar
  30. Kibel, G., Heilhecker, A., and van Bruchhausen, F., 1976, Lipid associated with bovine kidney glomerular basement membranes, Biochem. J. 155: 535.PubMedGoogle Scholar
  31. Lee, J. B., Vance, V. K., and Cahill, G. F., Jr., 1962, Metabolism of “C-labelled substrates by rabbit kidney cortex and medulla, Am. J. Physiol. 203: 27.PubMedGoogle Scholar
  32. Lee, J. B., Covino, B. G., Takman, B. H., and Smith, E. R., 1965, Renomedullary vasodepressor substance medullin: Isolation, chemical characterization and physiological properties, Circ. Res. 17: 57.PubMedGoogle Scholar
  33. Limas, C., Limas, C. J., and Gesell, M. S., 1976, Effects of indomethacin on renomedullary interstitial cells, Lab. Invest. 34: 522.PubMedGoogle Scholar
  34. Lo Chang, T., and Sweeley, C. C., 1963, Characterization of lipids from canine adrenal glands, Biochemistry 2: 592.CrossRefGoogle Scholar
  35. Morrison, A. B., and Schneeberger-Keeley, E. E., 1969, The phagocytic role of renal medullary interstitial cells and the effect of potassium deficiency on this function, Nephron 6: 584.PubMedCrossRefGoogle Scholar
  36. Muirhead, E. E., Leach, B. E., Byers, L. W., Brooks, B., Daniels, E. G., and Hinman, J. W., 1971, Antihypertensive neutral renomedullary lipids (ANRL), in: Kidney Hormones ( J. W. Fisher, ed.), Academic Press, London, p. 485.Google Scholar
  37. Nissen, H. M., 1967, On the lipid droplets in renal interstitial cells I. A histochemical study, Z. Zellforsch. Mikrosk. Anat. 83: 76.PubMedCrossRefGoogle Scholar
  38. Nissen, H. M., 1968a, On lipid droplets in renal interstitial cells II. A histological study on the number of droplets in salt depletion and acute salt repletion, Z. Zellforsch. Mikrosk. Anat. 85: 483.PubMedCrossRefGoogle Scholar
  39. Nissen, H. M., 1968b, On lipid droplets in renal interstitial cells III. A histological study on the number of droplets during hydration and dehydration, Z. Zellforsch. Mikrosk. Anat. 92: 52.PubMedCrossRefGoogle Scholar
  40. Nissen, H. M., and Bojesen, I., 1969, On lipid droplets in renal interstitial cells IV. Isolation and identification, Z. Zellforsch. Mikrosk. Anat. 97: 274.PubMedCrossRefGoogle Scholar
  41. Oshima, M., and Carpenter, M. P., 1968, The lipid composition of the prepubertal and adult rat testis, Biochim. Biophys. Acta 152: 479.PubMedGoogle Scholar
  42. Osvaldo-Decima, L., 1973, Ultrastructure of the lower nephron, in: Handbook of Physiology, Section 8: Renal Physiology (J. Orloff and R. W. Berliner, eds.), American Physiological Society, Washington, D. C., pp. 81–102.Google Scholar
  43. Peterson, J. A., and Rubin, H., 1970, The exchange of phospholipids between cultured chick embryo fibroblasts as observed by autoradiography, Exp. Cell Res. 60: 383.PubMedCrossRefGoogle Scholar
  44. Sbarra, A. S., Shirley, W., Baumstock, J. S., 1963, Effect of osmolality on phagocytosis, J. Bacteriol. 85: 306.PubMedGoogle Scholar
  45. Sen, S., Smeby, R. R., and Bumpus, F. M., 1967, Isolation of a phospholipid renin inhibitor from kidney, Biochemistry 6: 1572.PubMedCrossRefGoogle Scholar
  46. Stoffel, W., and Ach, K. L., 1964, Der Stoffwechsel der ungesättigten Fettsäuren II. Eigenschaften des kettenverlängernden Enzyms zur Frage der Biohydrogenierung der ungesättigten Fettsäuren, Z. Physiol. Chem. 377: 123.CrossRefGoogle Scholar
  47. Stoffel, W., Ecker, W., Assad, H., and Sprecher, H., 1970, Enzymatic studies on the mechanism of the retroconversion of C22-polyenoic fatty acids to their C20-homologues, Hoppe-Seylers Z. Physiol. Chem. 351: 1545.PubMedCrossRefGoogle Scholar
  48. Szokol, M., and Soltész, M. B., 1973, Histochemical study on the oxidative enzymes of the interstitial cells of the renal medulla in rats, Acta Histochem. 46: 120.PubMedGoogle Scholar
  49. Takayasu, K., Okuda, K., and Yoshikawa, I., 1970, Fatty acid composition of human and rat adrenal lipids: Occurence of w-6 docosatrienoic acid in human adrenal cholesterol ester, Lipids 5: 743.PubMedCrossRefGoogle Scholar
  50. Tsai, P. Y., and Geyer, R. P., 1978, Effect of exogenous fatty acids on the retention of phospholipid acyl groups by mouse L. fibroblasts, Biochim. Biophys. Acta 528: 344.PubMedGoogle Scholar
  51. Whereat, A. F., 1971, Fatty acid biosynthesis in aorta and heart, in: Advances in Lipid Research 9 ( R. Paoletti and D. Kritchevsky, eds.), Academic Press, New York and London, pp. 119–159.Google Scholar
  52. Yatsu, F. M., and Moss, S., 1970, Brain fatty acid elongation and multiple sclerosis, Nature 227: 1132.PubMedCrossRefGoogle Scholar
  53. Zilversmit, D. B., 1969, Chylomicrons, in: Structural and Functional Aspects of Lipoproteins in Living Systems ( E. Tria and A. M. Scame, eds.), Academic Press, London and New York, p. 346.Google Scholar
  54. Zusman, R. M., and Keiser, H. R., 1977, Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture: Stimulation by angiotensin II, bradykinin and arginine vasopressin, J. Clin. Invest. 60: 215.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Inge Norby Bojesen
    • 1
  1. 1.Institute of Experimental Hormone ResearchUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations