Studies on the Mechanism of the Renomedullary Antihypertensive Action

  • Dinko Sušić


The evidence gathered to date suggests that the renal medulla exerts a potent antihypertensive action and that the deficiency of renomedullary antihypertensive function is a contributory factor in the pathogenesis of various forms of hypertension. Yet, many questions concerning the role of the renal medulla in hypertension still remain to be answered. The most notable among them concerns the mechanism of the antihypertensive action. It is my objective to summarize the research dealing with this subject, although somewhat to my regret this chapter may not provide the reader with definite answers. The discussion on the mechanism of the renomedullary antihypertensive action will be restricted to endocrine-type mechanisms, although the medulla, as a part of the kidney, also participates in the regulation of blood pressure through its role in the regulation of sodium and water excretion and, therefore, in the regulation of body fluid volumes.


Renal Medulla Antihypertensive Action Spontaneously Hypertensive Bilateral Nephrectomy Renal Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, I., 1974, The hemodynamics of spontaneous hypertension in rats (Part 1). Male study, Jpn. Circ. J. 38: 985.PubMedCrossRefGoogle Scholar
  2. Atherton, J. C., 1978, Lability of renal papillary tissue composition in the rat, J. Physiol. 274: 323.PubMedGoogle Scholar
  3. Bianchi, G., Pagetti, D., Ferrari, P., Ponticelli, C., Bear, P. G., and Romagnoni, M., 1978, Increase in plasma extracellular fluid volume ratio caused by bilateral nephrectomy in patients on maintenance hem odialysis, Nephron 20: 75.PubMedCrossRefGoogle Scholar
  4. Bohman, S.- O., 1977, Demonstration of prostaglandin synthesis in collecting duct cells and other cell types of the rabbit renal medulla, Prostaglandins 14: 729.Google Scholar
  5. Borst, J. G. G., and Borst-DeGeus, A., 1963, Hypertension explained by Starling’s theory of circulatory homeostasis, Lancet 1: 677.PubMedCrossRefGoogle Scholar
  6. Coleman, T. G., Manning, R. D., Jr., Norman, R. A., Jr., and DeClue, J., 1976, The role of the kidney in spontaneous hypertension, Am. Heart J. 89: 94.CrossRefGoogle Scholar
  7. Dahl, L. K., and Heine, M., 1975, Primary role of renal homografts in setting blood pressure level in rats, Circ. Res. 36: 692.PubMedGoogle Scholar
  8. Danon, A., Knapp, H. R., Oelz, 0., and Oates, J. A., 1978, Stimulation of prostaglandin biosynthesis in the renal papilla by hypertonic mediums, Am. J. Physiol. 234: F64.Google Scholar
  9. Folkow, B., Hallback, M., Lundgren, Y., Sivertsson, R., and Weiss, L., 1973, Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and spontaneously hypertensive rats, Circ. Res. 32 (Suppl. I): 2.PubMedGoogle Scholar
  10. Ganguli, M., Tobian, L., and Dahl, L., 1976, Low renal papillary plasma flow in both Dahl and Kyoto rats with spontaneous hypertension, Circ. Res. 39: 337.PubMedGoogle Scholar
  11. Grollman, A., Muirhead, E. E., and Vanatta, J., 1949, Role of the kidney in pathogenesis of hypertension as determined by a study of the effects of bilateral nephrectomy and other experimental procedures on the blood pressure of the dog, Am. J. Physiol. 157: 21.PubMedGoogle Scholar
  12. Guyton, A. C., Coleman, T. G., Bower, J. D., and Granger, H. J., 1970, Circulatory control in hypertension, Circ. Res. 27 (Suppl. II): 135.PubMedGoogle Scholar
  13. Haddy, F. J., and Overbeck, H., 1976, The role of humoral agents in volume expanded hypertension, Life Sci. 19: 935.PubMedCrossRefGoogle Scholar
  14. Laborit, H., and Valette, N., 1973, The effect of arachidonic acid on experimental arterial hypertension in the rat, Agressologie 14: 387.PubMedGoogle Scholar
  15. Laragh, J. M., 1974, Vasoconstrictor-volume analysis for understanding and treating hypertension, in: Hypertension Manual (J. H. Laragh, ed.), Dunn Donnelley, New York, pp. 823-849.Google Scholar
  16. Leach, B. E., Armstrong, F. B., Jr., Germain, G. S., and Muirhead, E. E., 1973, Vasodepressor action of prostaglandins A2 and E2 in the spontaneously hypertensive rat (SH rat): Evidence for an action mediated by the vagus, J. Pharmacol. Exp. Ther. 185: 470.Google Scholar
  17. Ledingham, J. M., and Cohen, R. D., 1963, Hypertension explained by Starling’s theory of circulatory homeostasis, Lancet 1: 887.Google Scholar
  18. Lee, J. B., 1972, The inter-relationship between renal prostaglandins and blood pressure regulation, Am. J. Med. Sci. 263: 334.CrossRefGoogle Scholar
  19. Leonards, J. R., and Heisler, C. R., 1951, Maintenance of life in bilaterally nephrectomized dogs and its relation to malignant hypertension, Am. J. Physiol. 167: 553.PubMedGoogle Scholar
  20. Liard, J. F., 1976, Haemodynamics and body fluid volumes in response to fluid loading in conscious dogs: Non-excretory renal influences, Clin. Sci. Mol. Med. 51: 243.PubMedGoogle Scholar
  21. Lozzio, B. B., Buonocore, E., and Kentera, D., 1972, Radiologie and functional studies in rats with hereditary hydronephrosis, Invest. Urol. 10: 84.PubMedGoogle Scholar
  22. Lucas, J., and Floyer, M. A., 1973, Renal control of changes in the compliance of the inter- stitial space: A factor in the aetiology of renoprival hypertension, Clin. Sci. 44: 397.PubMedGoogle Scholar
  23. Lucas, J., and Floyer, M. A., 1974, Changes in body fluid distribution and interstitial space compliance during the development and reversal of experimental renal hypertension in the rat, Clin. Sci. Mol. Med. 47: 1.PubMedGoogle Scholar
  24. McGiff, J. C., Crowshaw, K., and Itskovitz, H. D., 1974, Prostaglandins and renal function, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33: 39.Google Scholar
  25. Manthorpe, T., 1973, The effect on renal hypertension of subcutaneous isotransplantation of renal medulla from normal or hypertensive rats, Acta Pathol. Microbiol. Scand. Sect A 81: 725.Google Scholar
  26. Manger, W. M., Van Praag, D., Weiss, R. J., Hart, C. J., Hulse, M., Rock, T. W., and Farber, S. J., 1976, Effect of transplanting renomedullary tissue into spontaneously hypertensive rats (SHR), Fed. Proc. Fed. Am. Soc. Exp. Biol. 35: 556.Google Scholar
  27. Moncada, R., Korbut, R., Bunting, S., and Vane, J. R., 1978, Prostacyclin is a circulatory hormone, Nature 273: 767.PubMedCrossRefGoogle Scholar
  28. Muirhead, E. E., 1976, Renomedullary antihypertensive function, Acta Biol. Med. Ger. 35: 1181.PubMedGoogle Scholar
  29. Muirhead, E. E., and Stirman, J. A., 1958, Dietary protein and hypertension of the dog: Protection by ureterocaval anastomosis with a study of kidneys so treated, Am. J. Pathol. 34: 561.Google Scholar
  30. Muirhead, E. E., Jones, F., and Stirman, J. A., 1960a, Hypertensive cardiovascular disease of dog. Relation of sodium and dietary protein to ureterocaval anastomosis and ureteral ligation, Arch. Pathol. 70: 108.PubMedGoogle Scholar
  31. Muirhead, E. E., Stirman, J. A., and Jones, F., 1960b, Renal autoexplantation and protection against renoprival hypertensive cardiovascular disease and hemolysis, J. Clin Invest. 39: 266.PubMedCrossRefGoogle Scholar
  32. Muirhead, E. E., Brown, G. B., Germain, G. S., and Leach, B. E., 1970, The renal medulla as an antihypertensive organ, J. Lab. Clin. Med. 76: 641.PubMedGoogle Scholar
  33. Muirhead, E. E., Leach, B. E., Byers, L. W., Brooks, B., Daniels, E. G., and Hinman, J. W., 1971, Antihypertensive neutral renomedullary lipids (ANRL), in: Kidney Hormones (J. W. Fisher, ed.), Academic Press, New York, pp. 485–506.Google Scholar
  34. Muirhead, E. E., Brooks, B., Pitcock, J. A., Stephenson, P., and Brosius, W. L., 1972a, Role of the renal medulla in sodium-sensitive component of renoprival hypertension, Lab. Invest. 27:192Google Scholar
  35. Muirhead, E. E., Germain, G., Leach, B. E., Pitcock, J. A., Stephenson, P., Brooks, B., Brosius, W. L., Daniels, E. G., and Hinman, J. W., 1972b, Production of renomedullary Prostaglandins by renomedullary interstitial cells grown in tissue culture, Circ. Res. 31 (Suppl. II): 161.PubMedGoogle Scholar
  36. Muirhead, E. E., Brooks, B., and Brosius, W. L., 1973, Renomedullary deficiency. A permissive factor in renoprival hypertension, Arch. Pathol. 95: 77.PubMedGoogle Scholar
  37. Muirhead, E. E., Germain, G. S., Armstrong, F. B., Brooks, B., Leach, B. E., Byers, L. W., Pitcock, J. A., and Brown, P., 1975, Endocrine type antihypertensive function of renomedullary interstitial cells, Kidney Intern. 8 (Suppl. 5): 122.Google Scholar
  38. Muirhead, E. E., Rightsel, W. A., Leach, B. E., Byers, L. W., Pitcock, J. A., and Brooks, B., 1977, Reversal of hypertension by transplants and lipid extracts of cultured renomedullary interstitial cells, Lab. Invest. 35: 162.Google Scholar
  39. Neubig, R. R., and Hoobler, S. W., 1975, Reversal of chronic renal hypertension: Role of salt and water excretion, Proc. Soc. Exp. Biol. Med. 150: 254.PubMedGoogle Scholar
  40. Pace-Asciak, C. R., Carrara, M. C., and Nicolau, K. C., 1978, Prostaglandin Iz has more potent hypotensive properties than prostaglandin E2 in the normal and spontaneously hypertensive rat, Prostaglandins 15: 999.PubMedCrossRefGoogle Scholar
  41. Pitcock, J. A., Rightsel, W. A., Brown, P., Brooks, B., and Muirhead, E. E., 1976, Functional-morphological correlates of renomedullary interstitial cells, Clin. Sci. Mol. Med. 51: 291s.Google Scholar
  42. Prewitt, R. L., Leach, B. E., Byers, L. W., Brooks, B., Lands, W. E. M., and Muirhead, E. E., 1979, Antihypertensive polar renomedullary lipid, a semisynthetic vasodilator, Hypertension 1: 299.PubMedGoogle Scholar
  43. Simon, G., 1976, Altered venous function in hypertensive rats, Circ. Res. 38: 412.PubMedGoogle Scholar
  44. Simon, G., 1978, Venous changes in renal hypertensive rats: The role of humoral factors, Blood Vessels 15: 311.PubMedGoogle Scholar
  45. Simon, G., Pamnani, M. B., and Overbeck, H. W., 1976, Decreased venous compliance in dogs with chronic renal hypertension, Proc. Soc. Exp. Biol. Med. 152: 122.PubMedGoogle Scholar
  46. Solez, K., D’Agostoni, R. J., Buono, R. A., Vernon, N., Wang, A. L., Finer, P. M., and Heptinstall, R. H., 1976, The renal medulla and mechanism of hypertension in the spontaneously hypertensive rat, Am. J. Pathol. 85: 555.PubMedGoogle Scholar
  47. SuMé, D., and Kentera, D., 1978, Resistance of a substrain of Wistar rats to salt hypertension, Res. Commun. Chem. Pathol. Pharmacol. 20: 175.Google Scholar
  48. Susié, D., and Kentera, D., 1980, Role of the renal medulla in the resistance of rats to salt hypertension, Pflügers Arch. Eur. J. Physiol. 384: 283.CrossRefGoogle Scholar
  49. Susie, D., and Sparks, J. C., 1975, Physiological actions of renomedullary prostaglandins—A viewpoint, IRCS Med. Sci. 3: 363.Google Scholar
  50. Susie, D., Sparks, J. C., and Kentera, D., 1975, The renin-angiotensin system in rats with hereditary hydronephrosis, Pflügers Arch. Eur. J. Physiol. 358: 265.CrossRefGoogle Scholar
  51. Susie, D., Sparks, J. C., and Machado, E. A., 1976a, Salt-induced hypertension in rats with hereditary hydronephrosis: The effect of renomedullary transplantation, J. Lab. Clin. Med. 87: 232.Google Scholar
  52. Sussie, D., Sparks, J. C., and Machado, E. A., 1976b, Renomedullary deficiency. A contribu- tory factor in the pathogenesis of experimental renal hypertension, Experientia 32: 354.CrossRefGoogle Scholar
  53. Susie, D., Sparks, J. C., and Kentera, D., 1977, Suppressed antihypertensive function of the renal medulla in rats with spontaneous hypertension, Pflügers Arch. Eur. J. Physiol. 368: 173.CrossRefGoogle Scholar
  54. Su’sié, D., Sparks, J. C., Machado, E. A., and Kentera, D., 1978, The mechanism of renomedullary antihypertensive action: Haemodynamic studies in hydronephrotic rats with one-kidney renal-clip hypertension, Clin. Sci. Mol. Med. 54: 361.Google Scholar
  55. Thurau, K., 1964, Renal hemodynamics, Am. J. Med. 36: 698.PubMedCrossRefGoogle Scholar
  56. Tobian, L., and Azar, S., 1971, Antihypertensive and other functions of the renal medulla, Trans. Assoc. Am. Physicians 84: 281.PubMedGoogle Scholar
  57. Ulrych, M., 1976, The role of vascular capacitance in the genesis of essential hypertension, Clin. Sci. Mol. Med. 51: 203s.Google Scholar
  58. Walker, L. A., Whorton, A. R., Smigel, M., France, R., and Frolich, J. C., 1978, Antidiuretic hormone increases renal prostaglandin synthesis in vivo, Am. J. Physiol. 235: F180.PubMedGoogle Scholar
  59. Whorton, A. R., Smigel, M., Oates, J. A., and Frolich, J. C., 1977, Evidence for prostacyclin production in renal cortex, Prostaglandins 13: 1021.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Dinko Sušić
    • 1
  1. 1.Institute for Medical ResearchBelgradeYugoslavia

Personalised recommendations