Some Aspects of Development of Nervous Tissue

  • Kedar N. Prasad


Vertebrate spinal and autonomic ganglia are derived from embryonic neural crest cells.1 This unique population of cells is also the developmental antecedent of a large number of other differentiated cell types, including neuroendocrine tissues such as the adrenal medulla and the calcitonin-producing (“C”) cells,2 and the glial (Schwann sheath and satellite) cells of the peripheral nervous system. Integumental pigment cells and cells that form skeletal and connective tissue of the head and face3 are also derivatives of the embryonic neural crest.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weston, J. A., The migration and differentiation of neural crest cells, Adv. Morphog. 8: 41–114, 1970.CrossRefGoogle Scholar
  2. 2.
    Le Douarin, N., and Le Lievre, C., Embryologie Experimentale. Démonstration de l’origine neurale des cellules à calcitonine du corps ultimobranchial chez l’embryon de poulet, C. R. Acad. Sci. (Paris) Ser. D. 270: 2857–2860, 1970.Google Scholar
  3. 3.
    Johnston, M. C., Bhakdinaronk, A., and Reid, Y. C., An expanded role of the neural crest in oral and pharyngeal development, in: Fourth Symposium on Oral Sensation and Perception (J. F. Bosma, ed.), pp. 37–52, USGPO, 1973.Google Scholar
  4. 4.
    Noden, D., An analysis of the migratory behavior of avian cephalic neural crest cells, Dev. Biol. 42: 106–130, 1975.CrossRefGoogle Scholar
  5. 5.
    Weston, J. A., A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick, Dev. Biol. 6: 279–310, 1963.CrossRefGoogle Scholar
  6. 6.
    Le Douarin, N. M., Renaud, D., Teillet, M. A., and Le Douarin, G. H., Cholinergie differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations, Proc. Natl. Acad. Sci. U.S.A. 72: 728–732, 1975.CrossRefGoogle Scholar
  7. 7.
    Le Douarin, N., A biological cell labeling technique and its use in experimental embryology, Devel. Biol. 30: 217–222, 1973.CrossRefGoogle Scholar
  8. 8.
    Le Douarin, N., and Barq, G., Embryologie Expérimentale. Sur l’utilisation des cellules de la Caille japonaise comme (margueurs biologigue) en endryologie experimentale, C.R. Acad. Sci. (Paris) Ser. D. 269: 1543–1546, 1969.Google Scholar
  9. 9.
    Dorris, F., The production of pigment in vitro by chick neural crest, Wilhelm Roux’ Arch. Entwicklungsmech. Org. 138: 323–335, 1938.CrossRefGoogle Scholar
  10. 10.
    Cohen, A. M., and Konigsberg, I. R., A clonal approach to the problem of neural crest determination, Dev. Biol. 46: 262–280, 1975.CrossRefGoogle Scholar
  11. 11.
    Maxwell, C., Cell cycle changes during neural crest cell differentiation in vitro, Dev. Biol. 49: 66–79, 1976.CrossRefGoogle Scholar
  12. 12.
    Drews, U., Kocher-Becker, U., and Drews, U., Die Induktion von Kiemenknorpel aus Kopfneuralleistenmaterial durch präsumptiven Kiemendarm in der Gewebekultur und das Bewegungsverhalten der Zellen während ihrer Entwicklung zu Knorpel, Wilhelm Roux’ Arch. Entwick Tungsmech, Org. 171: 17–37, 1972.Google Scholar
  13. 13.
    Newsome, D. A., In vitro stimulation of cartilage in embryonic chick neural crest cells by products of retinal pigmented epithelium, Dev. Biol. 49: 496–507, 1976.CrossRefGoogle Scholar
  14. 14.
    Cohen, A. M., Factors directing the expression of sympathetic nerve traits in cells of neural crest origin, J. Exp. Zool. 179: 167–182, 1972.CrossRefGoogle Scholar
  15. 15.
    Norr, S., In vitro analysis of sympathetic neuron differentiation from chick neural crest cells, Dev. Biol. 34: 16–38, 1973.CrossRefGoogle Scholar
  16. 16.
    Okun, L. M., Isolated dorsal root ganglion neurons in culture: cytological maturation and extension of electrically active processes, J. Neurobiol. 3: 111–151, 1972.CrossRefGoogle Scholar
  17. 17.
    Petersen, E. R., and Murray, M. R., Myelin sheath formation in cultures of avian spinal ganglia, Am. J. Anat. 96: 319–355, 1955.CrossRefGoogle Scholar
  18. 18.
    Cowell, L., and Weston, J. A., An analysis of melanogenesis in cultured chick embryo spinal ganglia, Dev. Biol. 22: 670–697, 1970.CrossRefGoogle Scholar
  19. 19.
    Weston, J. A., Neural crest cell migration and differentiation, in: Cellular Aspects of Neural Growth and Differentiation, (D. Pease, ed.), UCLA Forum in Medical Sciences, No. 14, pp. 1–22, University of California Press, Los Angeles, 1971.Google Scholar
  20. 20.
    Newgreen, D. F., and Jones, R. O., Differentiation in vitro of sympathetic cells from chick embryo sensory ganglia, J. Embryol. Exp. Morphol. 33: 43–56, 1975.PubMedGoogle Scholar
  21. 21.
    Patterson, P. H., Reichardt, L. F., and Chun, L. Y., Biochemical studies on the development of primary sympathetic neurons in cell culture, Cold Spring Harbor Symp. Quant. Biol. 40: 389–398, 1975.CrossRefGoogle Scholar
  22. 22.
    Burnham, P., Raiborn, C., and Varon, S., Replacement of nerve growth factor by ganglionic non-neuronal cells for the survival in vitro of disassociated ganglionic neurons, Proc. Natl. Acad. Sci. U.S.A. 69: 3556–3560, 1972.CrossRefGoogle Scholar
  23. 23.
    Weston, J. A., Pintai, J. E., Derby, M. A., and Nichols, D. H., The morphogenesis of spinal ganglia from neural crest cells, in: Progress in Clinical and Biological Research, Vol. 15 (Z. Hall, R. Kelly, and C. F. Fox, eds.), pp. 217–226, Alan R. Liss, New York, 1977.Google Scholar
  24. 24.
    Pratt, R. M., Larsen, M. A., and Johnston, M. C.; Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix, Dev. Biol. 44: 298–305, 1975.CrossRefGoogle Scholar
  25. 25.
    Cohen, A. M., and Hay, E. D., Secretion of collagen by embryonic neuoepithelium at the time of spinal cord-somite interaction, Dev. Biol. 26: 578–605, 1971.CrossRefGoogle Scholar
  26. 26.
    Scott, J. E., and Dorling, J., Differential staining of acid glycosmino-glycans (mucopolysaccharides) by Alcian blue in salt solutions, Histochemie 5: 221–233, 1965.CrossRefGoogle Scholar
  27. 27.
    Pollister, A. W., Swift, H., and Rasch, E., Microphotometry with visible light, in Physical Techniques in Biological Research, Vol. 3c (A. W. Pollister, ed.), pp. 201–251, 1969.Google Scholar
  28. 28.
    Pintar, J. E., Derby, M. A., and Weston, J. A., The interaction of trunk neural crest cells with glycosaminoglycans, J. Cell. Biol. 70: 371a, 1976.Google Scholar
  29. 29.
    Weston, J. A. and Butler, S. L., Temporal factors affecting localization of neural crest cells in the chicken embryo, Dev. Bio!. 14: 246–266, 1966.CrossRefGoogle Scholar
  30. 30.
    Toole, B. P., Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton, Dev. Biol. 29: 321–329, 1972.Google Scholar
  31. 31.
    Black, I. B., Regulation of the growth and development of sympathetic neurons in vivo, in: Progress in Clinical and Biological Research, Vol. 15 (A. Hall, R. Kelly, and C. F. Fox, eds.), pp. 61–71, Alan R. Liss, New York, 1977.Google Scholar
  32. 32.
    Sperry, R. W., Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. U.S.A. 50: 703–710, 1963.CrossRefGoogle Scholar
  33. 33.
    Roth, S., McGuire, E. J., and Roseman, S., An assay for intracellular adhesive specificity, J. Cell Biol. 51: 525–535, 1971.CrossRefGoogle Scholar
  34. 34.
    Walther, B. T., Ohman, R., and Roseman, S., A quantitative assay for intercellular adhesion, Proc. Nat. Acad. Sci. U.S.A. 70: 1569–1573, 1973.CrossRefGoogle Scholar
  35. 35.
    Gottlieb, D. I., Merrell, R., Rock, K., Littman, D., Santala, R., and Blaser, L., Studies on cell recognition in the developing brain, in: Progress in Clinical and Biological Research, Vol. 15 (Z. Hall, R. Kelly, and C. F. Fox, eds.), pp. 139–146, Alan R. Liss, New York, 1977.Google Scholar
  36. 36.
    Holtfreter, J., Studien zur Ermittlung der Gestaltungsfaktoren in der Organenentwicklung der Amphibien, Wilhelm Roux’ Arch. Entwicklungmech. Org. 139: 110–190, 1939.CrossRefGoogle Scholar
  37. Moscona, A. A., Analysis of cell recombinations in experimental synthesis of tissues in vitro, J. Cell. Comp. Physiol. 60(Suppl)(1):65–80, 1962.CrossRefGoogle Scholar
  38. 38.
    Trelstad, R. L., Hay, E. D., and Revel, J. P., Cell contact during early morphogenesis in the chick embryo, Dev. Bio!. 16: 78–106, 1967.CrossRefGoogle Scholar
  39. 39.
    Hausman, R. E., and Moscona, A. A., Purification and characterization of the retina-specific cell-aggregating factor, Proc. Natl. Acad. Sci. U.S.A. 72: 916–920, 1975.CrossRefGoogle Scholar
  40. 40.
    Merrell, R., Gottlieb, D. I., and Glaser, L., Embryonal cell surface recognition. Extraction of an active plasma membrane component, J. Biol. Chem. 250: 5655–5659, 1975.PubMedGoogle Scholar
  41. 41.
    Balsamo, J., and Lilien, J., Functional identification of three components which mediate tissue-type specific embryonic cell adhesion, Nature (London) 251: 522–524, 1974.CrossRefGoogle Scholar
  42. 42.
    Thiery, J., Brackenburg, R., Rutishauser, U., and Edelman, G., Adhesion among neural cells of the chick embryo, in: Progress in Clinical and Biological Research, Vol. 15 (Z. Hall, R. Kelly, and C. Fox, eds.), pp. 199–206, Alan R. Liss, New York, 1977.Google Scholar
  43. 43.
    Rutishauser, U., Thiery, J. P., Brackenbury, R., Sela, B. A., and Edelman, G. M., Mechanisms of adhesion among cells from neural tissues of the chick embryo, Proc. Natl. Acad. Sci. U.S.A. 73: 577–581, 1976.CrossRefGoogle Scholar
  44. 44.
    Cowan, W. M., Neuronal deaths as a regulative mechanism in the control of cell number in the nervous system, in: Development and Aging in the Nervous System (M. Rockstein, ed.), pp. 19–34, Academic Press, New York, 1973.CrossRefGoogle Scholar
  45. 45.
    Hughes, A., A quantitative study of the development of the nerves in the hind limb of Eleutherodactylus martinicensis, J. Embryo!. Exp. Morphol. 13: 9–34, 1965.Google Scholar
  46. 46.
    Prestige, M. C., The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles, J. Embryol. Exp. Morphol. 18: 359–387, 1967.PubMedGoogle Scholar
  47. 47.
    Romanes, G. J., Motor localization and the effects of nerve injury on the ventral horn cells of the spinal cord, J. Anat. 80: 117–131, 1946.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Levi-Montalcini, R., The origin and development of the visceral system in the spinal cord of the duck embryo, J. Morphol. 86: 253–283, 1950.CrossRefGoogle Scholar
  49. 49.
    Eccles, J. C., Trophic influences in the mammalian nervous system, in: Development and Aging in the Nervous System (M. Rockstein, ed.), pp. 89–99, Academic Press, New York, 1973.CrossRefGoogle Scholar
  50. 50.
    Jacobson, M., Genesis of neuronal locus specificity, in: Development and Aging in the Nervous System (M. Rockstein, ed.), pp. 105–116, Academic Press, New York, 1973.CrossRefGoogle Scholar
  51. 51.
    Lowenstein, W. R., Intercellular communication, Sci. Amer. 222: 78–86, 1970.CrossRefGoogle Scholar
  52. 52.
    Sheridan, J. D., Electrophysiological evidence for low resistance intercellular functions in the early duck embryo, J. Cell Biol. 37: 650–659, 1968.CrossRefGoogle Scholar
  53. 53.
    Black, J. B., Geen, S. C., Inhibition of the biochemical and morphological maturation of adrenergic neurons by nicotine receptor blockade, J. Neurology 22: 301–306, 1974.Google Scholar
  54. 54.
    Black, J. B., Hendry, J. A., Iversen, L. L., Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neuron in a mouse sympathetic ganglion, J. Neurochern. 19:1367–1377, 1972.CrossRefGoogle Scholar
  55. 55.
    Black, J. B., Hendry, J. A., Iversen, L. L., Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion, Brain Res. 34: 229–246, 1971.CrossRefGoogle Scholar
  56. 56.
    Black, J. B., and Mytilineou, C., Trans-synaptic regulation of the development of end organ innervation by sympathetic neurons, Brain Res. 101:503–521, 1976.CrossRefGoogle Scholar
  57. 57.
    Horridge, G. A., Interneurons: Their Origin, Action, Specificity, Growth and Plasticity, Freeman, San Francisco, 1968.Google Scholar
  58. 58.
    Atwood, H. L., and Wiersma, C. A. G., Command interneurons in the crayfish central nervous system, J. Exp. Biol. 46: 249–261, 1967.PubMedGoogle Scholar
  59. 59.
    Bentley, D. R., Genetic control of an insect neuronal network, Science 174: 1139 1141, 1971.Google Scholar
  60. 60.
    Benzer, S., Genetic dissection of behavior, Sci. Amer. 229: 24–37, 1973.CrossRefGoogle Scholar
  61. 61.
    Taub, E., Perella, P., and Barro, G., Behavioral development after forelimb deafferentation on day of birth in monkeys with and without blinding, Science 181: 959–960, 1973.CrossRefGoogle Scholar
  62. 62.
    Threlkeld, S. F. H., Procwat, R. A., Abbott, K. S., and Yeung, A. D., Genetically based behavior patterns in Drosophila melanogaster, Nature (London) 247: 232–244, 1974.CrossRefGoogle Scholar
  63. 63.
    Jacobson, M., Development, specification, and diversification of neuronal connections, in: The Neurosciences, Second Study Program (F. O. Schmitt, ed.), pp. 116129, Rockefeller University Press, New York, 1970.Google Scholar
  64. 64.
    Jacobson, M., A plentitude of neurons, in: Aspects of Neurogenesis (G. Gottlieb, ed.), pp. 151–166, Academic Press, New York, 1970.Google Scholar
  65. 65.
    Baker, R., Some comments on central and peripheral plastic changes in nerve connections, in: Molecular and Functional Neurobiology (W. H. Gispen, ed.), pp. 47–86, Elsevier, New York, 1976.Google Scholar
  66. 66.
    Speidel, C. C., Adjustments of nerve endings, Harvey Lect. 36: 126–158, 1941.Google Scholar
  67. 67.
    Baylor, D. A., and Nicholls, J. G., Patterns of regeneration between individual nerve cells in the central nervous system of the leech, Nature (London) 232: 268–269, 1971.CrossRefGoogle Scholar
  68. 68.
    Bennett, M. R., McLachlan, E. M., and Taylor, R. S., The formation of synapses in reinnervated mammalian striated muscle, J. Physiol. (London) 233: 481–500, 1973.CrossRefGoogle Scholar
  69. 69.
    Burgess, P. R., English, K. B., Korch, K. W., and Stensaas, L. J., Patterning in the regeneration of type I cutaneous receptors, J. Physiol. (London) 236: 57–82, 1974.CrossRefGoogle Scholar
  70. 70.
    Grimm, L. M., An evaluation of myotypic respecification in axolotls, J. Exp. Zool. 178:479–496, 1971.Google Scholar
  71. 71.
    Cass, D. T., Sutton, T. J., and Mark, R. F., Competition between nerves for functional connections with axolotl muscles, Nature (London) 243: 201–203, 1973.CrossRefGoogle Scholar
  72. 72.
    Stirling, V., The effect of increasing the innervation field sizes of nerves on their reflex response time in salamanders, J. Physiol. (London) 229: 657–679, 1973.CrossRefGoogle Scholar
  73. 73.
    Pilar, G., and Landmesser, L., Axotomy mimicked by localized colchicine application, Science 177: 1116–1118, 1972.CrossRefGoogle Scholar
  74. 74.
    Perisic, M., and Cuenod, M., Synaptic transmission depressed by colchicine blockade of axoplasmic flow, Science 175: 1140–1142, 1972.CrossRefGoogle Scholar
  75. 75.
    Aguilar, C. E., Bisby, M. A., Cooper, E., and Diamond, J., Evidence that axoplasmic transport of trophic factors is involved in the regulation of peripheral nerve fields in salamanders, J. Physiol. (London) 234: 449–464, 1973.CrossRefGoogle Scholar
  76. 76.
    Ramon y Cajal, S., Degeneration and Regeneration of the Nervous System (trans. R. M. May ), Hafner, New York, 1959.Google Scholar
  77. 77.
    Das, G. D., and Altman, J., Studies on the transplantation of developing neural tissue into the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats, Brain Res. 38: 233–249, 1972.CrossRefGoogle Scholar
  78. 78.
    Björklund, A., Katzman, R., Stenevi, U., and West, K. A., Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurones in the rat spinal cord, Brain Res. 31: 21–33, 1971.CrossRefGoogle Scholar
  79. 79.
    Moore, R. Y., Björklund, A., and Stenevi, U., Growth and plasticity of adrenergic neurons, in: The Neurosciences, Vol. 3 (F. O. Schmitt and F. G. Worden, eds.), pp. 961–977, MIT Press, Cambridge, Mass., 1974.Google Scholar
  80. 80.
    Murray, J. G., and Thompson, J. W., The occurrence and function of collateral sprouting in the sympathetic nervous system of the cat, J. Physiol. (London) 135: 133–162, 1957.CrossRefGoogle Scholar
  81. 81.
    Guth, L., and Bernstein, J. J., Selectivity in the re-establishment of synapses in the superior cervical sympathetic ganglion of the cat, Exp. Neurol. 4: 59–69, 1961.CrossRefGoogle Scholar
  82. 82.
    Liu, C. N., and Chambers, W. W., Intraspinal sprouting of dorsal root axons. Development of new collaterals and preterminals following partial denervation of the spinal cord in the cat, Arch. Neurol. Psychiatry 79: 46–61, 1958.CrossRefGoogle Scholar
  83. 83.
    McCouch, G. P., Austin, G. M., Liu, C. M., and Liu, C. Y., Sprouting as a cause of spasticity, J. Neurophysiol. 21: 205–216, 1958.CrossRefGoogle Scholar
  84. 84.
    Rose, J. E., Malis, L. I. Kruger, L., and Baker, C. P., Effects of heavy, ionizing, monoenergetic particles on the cerebral cortex. III. Histological appearance of laminar lesions and growth of nerve fibers after laminar destruction, J. Comp. Neurol. 115:243–295, 1960.CrossRefGoogle Scholar
  85. 85.
    Eccles, J. C., Eccles, R. M., and Shealy, C. N., An investigation into the effect of degenerating primary afferent fibers on the monosynaptic innervation of motoneurons, J. Neurophysiol. 25: 544–558, 1962.CrossRefGoogle Scholar
  86. 86.
    Goodman, D.C., and Horel, J. A., Sprouting of optic tract projections in the brain stem of the rat, J. Comp. Neurol. 127: 71–88, 1966.CrossRefGoogle Scholar
  87. 87.
    Raisman, G., Neuronal plasticity in the septal nuclei of the adult rat, Brain Res. 14: 25–48, 1969.CrossRefGoogle Scholar
  88. 88.
    Lynch, G. S., Deadwyler, S., and Cotman, C. W., Postlesion axonal growth produce permanent functional connections, Science 180: 1364–1366, 1973.CrossRefGoogle Scholar
  89. 89.
    Stenevi, U., Björklund, A., and Moore, R. Y., Morphological plasticity of central adrenergic neurons, Brain Behay. Evol. 8: 110–134, 1973.CrossRefGoogle Scholar
  90. 90.
    Levi-Montalcini, R., and Chen, J. S., Selective outgrowth of nerve fibers in vitro from embryonic ganglia of Periplaneta americana, Arch. Ital. Biol. 109: 307–337, 1971.PubMedGoogle Scholar
  91. 91.
    Garber, B., and Moscona, A. A., Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing brain, Dev. Biol. 27: 235–243, 1972.CrossRefGoogle Scholar
  92. 92.
    Barbera, A. J., Marchase, R. B., and Roth, S., Adhesive recognition and retinotectal specificity, Proc. Natl. Acad. Sci. U.S.A. 70: 2482–2486, 1973.CrossRefGoogle Scholar
  93. 93.
    Chamley, J. H., Goller, I., and Burnstock, G., Selective growth of sympathetic nerve fibers to explants of normally densely innervated autonomic effector organs in tissue culture, Dev. Biol. 31: 362–379, 1973.CrossRefGoogle Scholar
  94. 94.
    Olson, M. I., and Bunge, R. P., Anatomical observations on the specificity of synapse formation in tissue culture, Brain Res. 59: 19–33, 1973.CrossRefGoogle Scholar
  95. 95.
    Blinzinger, K., and Kreutzberg, G., Displacement of synaptic terminals from regenerating motoneurons by microglial cells, Z. Zellforsch. Mikrosk. Anat. 85: 145157, 1968.Google Scholar
  96. 96.
    Bernstein, J. J., and Bernstein, M. E., Neuronal alteration and reinnervation following axonal regeneration and sprouting in mammalian spinal cord, Brain Behay. Evol. 8:135–161, 1973.Google Scholar
  97. 97.
    Gelfan, S., Field, T. H., and Pappas, G. D., The receptive surface and axonal terminals in severely denervated neruons within the lumbosacral cord of the dog, Exp. Neurol. 43: 162–191, 1974.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kedar N. Prasad
    • 1
  1. 1.University of Colorado Medical CenterDenverUSA

Personalised recommendations