Advertisement

Parent and Hybrid Neuroblastoma Cells in Culture as a Model System for Neuronal Function

  • Kedar N. Prasad

Abstract

Parent and hybrid neuroblastoma cells lines have been extensively used to study certain aspects of neurobiology. In vitro hybridization of somatic cells of dissimilar differentiated types results in extinction of some differentiated phenotypes, continued expression of others, and even activation of some traits.1 In order to understand the mechanism of regulation of differentiated functions in nerve cells, mouse neuroblastoma cells have been fused with three different cell types: fibroblasts, glioma cells, and sympathetic ganglion cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson, R. L., Control of expression of differentiated functions in somatic cell hybrids, in: Somatic Cell Hybridization ( R. L. Davidson and F. De La Cruz, eds.), Raven Press, New York, 1974.Google Scholar
  2. 2.
    McMorris, F. A., Kolber, A. R., Moore, B. W., and Perumal, A. S., Expression of the neuron–specific protein, 14–3–2, and steroid sulfatase in neuroblastoma cell hybrids, J. Cell. Physiol 84: 473 – 480, 1974.CrossRefGoogle Scholar
  3. 3.
    McMorris, F. A., and Ruddle, F. H., Expression of neuronal phenotypes in neuro-blastoma cell hybrids, Dev. Biol 39: 226–246, 1974.CrossRefGoogle Scholar
  4. 4.
    Minna, J., Glazer, D., and Nirenberg, M., Genetic dissection of neural properties using somatic cell hybrids, Nature (London) New Biol. 235: 225–231, 1972.CrossRefGoogle Scholar
  5. 5.
    Peacock, J. H., McMorris, F. A., and Nelson, P. G., Electrical excitability and chemosensitivity of mouse neuroblastoma x mouse or human fibroblast hybrids, Exp. Cell Res 79: 199–212, 1973.CrossRefGoogle Scholar
  6. 6.
    Yogeeswaran, G., Murray, R. K., Pearson, M. L., Sanwal, B. D., McMorris, F. A., and Ruddle, F. H., Glycosphingolipids of clonal lines of mouse neuroblastoma and neuroblastoma x L cell hybrids, J. Biol. Chem 248: 1231–1239, 1973.PubMedGoogle Scholar
  7. 7.
    Minna, J., Nelson, P., Peacock, J., Glazer, D., and Nirenberg, M., Genes for neuronal properties expressed in neuroblastoma x L-cell hybrids, Proc. Natl. Acad. Sci. U.S.A 68: 234–239, 1971.CrossRefGoogle Scholar
  8. 8.
    Hamprecht, B., Traber, J., and Lamprecht, F., Dopamine ß-hydroxylase activity in cholinergic neuroblastoma x glioma hybrid cells; increase of activity by N602’dibutyryl adenosine 3’:5’-cyclic monophosphate, FEBS Lett. 42: 221–226, 1974.CrossRefGoogle Scholar
  9. 9.
    Prasad, K. N., and Hsie, A. W., Morphological differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3’:5’-cyclic monophosphate, Nature (London) New Biol. 233: 141–142, 1971.CrossRefGoogle Scholar
  10. 10.
    Prasad, K. N., Differentiation of neuroblastoma cells in vitro, Biol. Rev 50: 129–165, 1975.CrossRefGoogle Scholar
  11. 11.
    Amano, T., Hamprecht, B., and Kemper, W., High activity of choline acetyltransferase induced in neuroblastoma x glia hybrid cells, Exp. Cell Res 85: 399–408, 1974.CrossRefGoogle Scholar
  12. 12.
    Greene, L. A., Shain, W., Chalazonitis, A., Breakfield, X., Minna, J., Coon, H. G., and Nirenberg, M., Neuronal properties of hybrid neuroblastoma x sympathetic ganglion cells, Proc. Natl. Acad. Sci. U.S.A 72: 4923–4927, 1975.CrossRefGoogle Scholar
  13. 13.
    Daniels, M. P., and Hamprecht, B., The ultrastructure of neuroblastoma glioma somatic cell hybrids. Expression neuronal characteristics stimulated by dibutyryl adenosine 3’:5’-cyclic monophophate, J. Cell. Biol 63: 691–699, 1974.CrossRefGoogle Scholar
  14. 14.
    Chalazonitis, A., Greene, L. A., and Shain, W., Excitability and chemosensitivity properties of a somatic cell hybrid between mouse neuroblastoma and sympathetic ganglion cells, Exp. Cell Res 96: 225–238, 1975.CrossRefGoogle Scholar
  15. 15.
    Klee, W. A., Sharma, S. K., and Nirenberg, M., Opiate receptors as regulators of adenylate cyclase, Life Sci. 16: 1869–1874, 1975.CrossRefGoogle Scholar
  16. 16.
    Klee, W. A., and Nirenberg, M., A neuroblastoma x glioma hybrid cell line with morphine receptors, Proc. Natl. Acad. Sci. U.S.A 71: 3474–3477, 1974.CrossRefGoogle Scholar
  17. 17.
    Sharma, S. K., Nirenberg, M., and Klee, W. A., Morphine receptors as regulators of adenylate cyclase activity, Proc. Natl. Acad. Sci. U.S.A 72: 590–594, 1975.CrossRefGoogle Scholar
  18. 18.
    Blosser, J. C., Abbott, J. R., and Shain, W., Sympathetic ganglion x neuroblastoma somatic cell hybrids with opiate receptor activity, Fed. Proc 34: 713a, 1975.Google Scholar
  19. 19.
    Simon, E. J., Hiller, J. M., and Edelman, I., Stereospecific binding of the potent narcotic analgesic [’H]etorphine to rat-brain homogenate, Proc. Natl. Acad. Sci. U.S.A 70: 1947–1949, 1973.CrossRefGoogle Scholar
  20. 20.
    Pert, C. B., and Snyder, S. H., Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol 10: 868–879, 1974.Google Scholar
  21. 21.
    Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., Morphine antagonises action of prostaglandin in neuroblastoma and neuroblastoma x glioma hybrid cells, Nature (London) 253: 120–122, 1975.CrossRefGoogle Scholar
  22. 22.
    Collier, H. O. J., and Roy, A. C., Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate, Nature (London) 248: 24–27, 1974.Google Scholar
  23. 23.
    Collier, H. O. J., and Roy, A. C., Hypothesis inhibition of E prostaglandin-sensitive adenyl cyclase as the mechanism of morphine analgesia, Prostaglandins 7: 361–376, 1974.Google Scholar
  24. 24.
    Sharma, S. K., Klee, W. A., and Nirenberg, M., Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Natl. Acad. Sci. U.S.A 72: 3092–3096, 1975.CrossRefGoogle Scholar
  25. 25.
    Smith, A. A., Karmin, M., and Gavitt, J., Tolerance to the lenticular effects of opiates, J. Pharmacol. Exp. Ther 156: 85–91, 1967.PubMedGoogle Scholar
  26. 26.
    Manner, G., Foldes, F. F., Kuleba, M., and Deery, A. M., Morphine tolerance in a human neuroblastoma line: Changed in choline acetylase and cholinesterase activities, Experientia 30: 137- 138, 1974.CrossRefGoogle Scholar
  27. 27.
    Birks, R., and Maclntosh, F. C., Acetylcholine metabolism of a sympathetic ganglion, Can. J. Biochem. and Physiol 39: 787–827, 1961.CrossRefGoogle Scholar
  28. 28.
    Browning, E. T., and Schulman, M. P., [4C]Acetylcholine synthesis by cortex slices of rat brain, J. Neurochem. 15: 1391–1405, 1968.CrossRefGoogle Scholar
  29. 29.
    Anse11, G. B., and Spanner, S., The long-term metabolism of the ethanolamine moiety of rat brain myelin phospholipids, J. Neurochem. 15: 1371–1373, 1968.CrossRefGoogle Scholar
  30. 30.
    Yamamura, H. I., and Snyder, S. H., Choline: High-affinity uptake by rat brain synaptosomes, Science 178: 626–628, 1972.CrossRefGoogle Scholar
  31. 31.
    Dowdall, M. J., and Simon, E. J., Comparative studies on synaptosomes: Uptake of (N-Mc-34) choline by synaptosomes from squid optic lobes, J. Neurochem. 21: 969982, 1973.CrossRefGoogle Scholar
  32. 32.
    Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., Choline uptake in neuroblastoma cell cultures: Influence of ionic environment, Pharmacol. Res. Commun 5: 397–406, 1973.CrossRefGoogle Scholar
  33. 33.
    Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., Kinetics of choline uptake in neuroblastoma clones, Biochem. Pharmacol 23: 2857–2865, 1974.CrossRefGoogle Scholar
  34. 34.
    Massarelli, R., Sensenbrenner, M., Ebel, A., and Mandel, P., Incorporation de choline dans une culture de cellules du recherche d’embryou de poulet, J. Physiol. (France) 67: 292A, 1973.Google Scholar
  35. 35.
    Stefanovie, V., Massarelli, R., Mandel, P., and Rosenberg, A., Effect of cellular desialylation on choline high affinity uptake and ecto-acetylcholinesterase activity of cholinergie neuroblasts, Biochem. Pharmacol 24: 1923–1928, 1975.CrossRefGoogle Scholar
  36. 36.
    Lanks, K., Somers, L., Papirmeister, B., and Yamamura, H., Choline transport by neuroblastoma cells in tissue culture, Nature (London) 252: 476–478, 1974.CrossRefGoogle Scholar
  37. 37.
    Richelson, E., and Thompson, E. J., Transport of neurotransmitter precursors into cultured cells, Nature (London) New Biol. 241: 201–204, 1973.CrossRefGoogle Scholar
  38. 38.
    Zwiller, J., Ciesielski-Treska, J., Mack, G., and Mandel, P., Uptake of noradrenaline by an adrenergic clone of neuroblastoma cells, Nature (London) 254: 443444, 1975.CrossRefGoogle Scholar
  39. 39.
    Iversen, L. L., Uptake mechanisms for neurotransmitter amines, Biochem. Pharmacol 23: 1927–1935, 1974.CrossRefGoogle Scholar
  40. 40.
    Kimelberg, H. K., Active potassium transport and [Na- + K+]ATPase activity in cultured clioma and neuroblastoma cells, J. Neurochem 22: 971–976, 1974.CrossRefGoogle Scholar
  41. 41.
    Rotman, A., Daly, J. W., Creveling, C., and Breakefield, X. O., Uptake and binding of dopamine and 6-hydroxydopamine in murine neuroblastoma and fibroblast cells, Biochem. Pharmacol 25: 383–388, 1976.CrossRefGoogle Scholar
  42. 42.
    Angeletti, P. U., and Levi-Montalcini, R., Cytolytic effect of 6-hydroxydopamine on neuroblastoma cells, Cancer Res. 30: 2863–2869, 1970.PubMedGoogle Scholar
  43. 43.
    Prasad, K. N., Effect of dopamine and 6-hydroxydopamine on mouse neuroblastoma cells in vitro, Cancer Res. 31: 1457–1460, 1971.PubMedGoogle Scholar
  44. 44.
    Axelrod, J., The metabolism, storage, and release of catecholamines, Recent Prog. Horm. Res 21: 597–622, 1965.PubMedGoogle Scholar
  45. 45.
    Curtis, D. R., and Johnston, G. A. R., Amino acid transmitter, in: Handbook of Neurochemistry, Vol. 4 (A. Lajtha, ed.), pp. 115–134, Plenum Press, New York, 1970.Google Scholar
  46. 46.
    Henn, F. A., and Hamberger, A., Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sci. U.S.A 68: 2686–2690, 1971.CrossRefGoogle Scholar
  47. 47.
    Hutchison, H. T., Werrbach, K., Vance, C., and Haber, B., Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture. I. Transport of y-aminobutyric acid, Brain Res. 66: 265–274, 1974.CrossRefGoogle Scholar
  48. 48.
    Schubert, D., The uptake of GABA by clonal nerve and glia, Brain Res. 84: 87–98, 1975.CrossRefGoogle Scholar
  49. 49.
    DeLellis, R. A., Rabson, A. S., and Albert, D., The cytochemical distribution of catecholamines in the C-1300 murine neuroblastoma, J. Histochem. and Cytochem 18: 913–914, 1970.CrossRefGoogle Scholar
  50. 50.
    Schubert, D., Humphreys, S., Baroni, C., and Cohn, M., In vitro differentiation of a mouse neuroblastoma, Proc. Natl. Acad. Sci. U.S.A 64: 316–323, 1969.CrossRefGoogle Scholar
  51. 51.
    Narotzky, R.N and Bondareff, W., Biogenic amines in cultured neuroblastoma and astrocytoma cells, J. Cell Biol 63: 64–70, 1974.CrossRefGoogle Scholar
  52. 52.
    Prasad, K. N., Mandai, B., Waymire, J. C., Lees, G. J., Vernadakis, A., and Weiner, N., Basal levels of neurotransmitter synthesizing enzymes and effect of cyclic AMP agents on the morphological differentiation of isolated neuroblastoma clones, Nature (London) New Biol. 241: 117–119, 1973.CrossRefGoogle Scholar
  53. 53.
    Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L., Clonal cell lines from the rat central nervous system, Nature (London) 249: 224–227, 1974.CrossRefGoogle Scholar
  54. 54.
    Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V., The cellular localization of the two brain specific proteins S–100 and 14–3–2, Brain Res. 18: 25 – 34, 1970.CrossRefGoogle Scholar
  55. 55.
    Perez, V. J., Olney, J. W., Cicero, T. J., Moore, B. W., and Bahn, B. A., Wallerian degeneration in rabbit optic nerve: Cellular localization in the central nervous system of S–100 and 14–3–2 proteins, J. Neurochem 17: 511 – 519, 1970.CrossRefGoogle Scholar
  56. 56.
    Packman, P. M., Blomstrand, C., and Hamberger, A., Disc electrophoretic separation of proteins in neuronal, glial and subcellular fractions from cerebral cortex, J. Neurochem 18: 479–487, 1971.CrossRefGoogle Scholar
  57. 57.
    Haglid, K., Carlsson, C. A., and Stavrou, D., An immunological study of human brain tumors concerning the brain specific proteins S–100 and 14–3–2, Acta Neuropathol. (Berlin) 24: 187 – 196, 1973.CrossRefGoogle Scholar
  58. 58.
    Hydén, H., and McEwen, B., A glial protein specific for the nervous system, Proc. Natl. Acad. Sci. U.S.A 55: 354–358, 1966.CrossRefGoogle Scholar
  59. 59.
    Sviridov, S. M., Korochkin, L. I., Ivanov, V. N., Maletskaya, E. I., and Bakhtina, T. K., Immunohistochemical studies of S-100 protein during postnatal ontogenesis of the brain of two strain of rats, J. Neurochem 19: 713–718, 1972.CrossRefGoogle Scholar
  60. 60.
    Sensenbrenner, M., Differentiation of cells in dissociated cell culture, in: Cell, Tissue and Organ Cultures in Neurobiology (S. Fedoroff and L. Hertz, eds.), pp. 191–213, Academic Press, New York, 1977.CrossRefGoogle Scholar
  61. 61.
    Walum, E., and Eström, A., Kinetics of 2-deoxy-D-glucose transport into cultured mouse neuroblastoma cells, Exp. Cell. Res 97: 1–8, 1976.CrossRefGoogle Scholar
  62. 62.
    Prasad, K. N., Sahu, S. K., and Kumar, S., Relationship between cyclic AMP level and differentiation of neuroblastoma cells in culture, in: Differentiation and Control of Malignancy of Tumor Cells (W. Nakahara, T. Ono, T. Sugimura, and H. Sugano, eds.), pp. 287–309, University of Tokyo Press, Tokyo, 1974.Google Scholar
  63. 63.
    Edström, A., Kanje, M., and Walum, E., Density dependent inhibiton of 2-deoxy-D-glucose uptake into glioma and neuroblastoma cells in culture, Exp. Cell Res 97: 8–15, 1976.CrossRefGoogle Scholar
  64. 64.
    Newburgh, R. W., and Rosenberg, R. N., Effect of norepinephrine on glucose metabolism in glioblastoma and neuroblastoma cells in cell culture, Proc. Natl. Acad. Sci. U.S.A. 69:1677–1680, 1972.Google Scholar
  65. 65.
    Passonneau, J. V., and Crites, S. K., Regulation of glycogen metabolism in astrocytoma and neuroblastoma cells in culture, J. Biol. Chem 251: 2015–2022, 1976.PubMedGoogle Scholar
  66. 66.
    Guth, L., and Watson, P. K., A correlated histochemical and quantitative study on cerebral glycogen after brain injury in the rat, Exp. Neural 22: 590–602, 1968.CrossRefGoogle Scholar
  67. 67.
    Passonneau, J. V., and Lowry, O. H., in: Recent Advances in Quantitative Histo-and Cytochemistry ( U. C. Dubach and U. Schmidt, eds.), pp. 198–212, Hans Huber, Bern, 1971.Google Scholar
  68. 68.
    Wintzerith, M., Ciesielski-Treska, J., Dierich, A., and Mandel, P., Comparative investigation of free nucleotides in two neuroblastoma clonal cell lines, J. Neurochem 26: 205–207, 1976.PubMedGoogle Scholar
  69. 69.
    Mandel, P., and Edel-Harth, S., Free nucleotides in the rat brain during post-natal development, J. Neurochem 13: 591–595, 1966.CrossRefGoogle Scholar
  70. 70.
    Schubert, D., Carlisle, W., and Look, C., Putative neurotransmitters in clonal cell lines, Nature (London) 254: 341–343, 1975.CrossRefGoogle Scholar
  71. 71.
    Saifer, A., Comparative study of various extraction methods for the quantitative determination of free amino acids from brain tissue, Analyt. Biochem 40: 412–423, 1971.CrossRefGoogle Scholar
  72. 72.
    Hokin, L. E., Dynamic aspects of phospholipids during protein secretion, Int. Rev. Cytol 23: 187–208, 1968.CrossRefGoogle Scholar
  73. 73.
    Lapetina, E. G., and Michell, R. H., Phosphatidylinositol metabolism in cells receiving extracellular stimulation, FEBS Lett. 31: 1–10, 1973.CrossRefGoogle Scholar
  74. 74.
    Honkin, L. E., Phospholipid metabolism and functional activity of nerve cells, in: Structure and Function of Nervous Tissue, Vol. 3 (G. H. Bourne, ed.), pp. 161–184, Academic Press, New York, 1969.Google Scholar
  75. 75.
    Schacht, J., and Agranoff, B. W., Effects of acetylcholine on labeling of phosphatidate and phosphoinositides by [32P]orthophosphate in nerve ending fractions of guinea pig cortex, J. Biol. Chem 247: 771–777, 1972.PubMedGoogle Scholar
  76. 76.
    Yagihara, Y., Bleasdale, J. E., and Hawthorne, J. N., E.fects of acetylcholine on the incorporation of [32P]orthophosphate in vitro into the phospholipids of subsynaptosomal membranes from guinea-pig brain, J. Neurochem. 21: 173–190, 1973.CrossRefGoogle Scholar
  77. 77.
    Hokin, M. R., Effect of norepinephrine of 32P incorporation into individual phosphatides in slices from different areas of the guinea pig brain, J. Neurochem 16: 127–134, 1969.CrossRefGoogle Scholar
  78. 78.
    Abdel-Latif, A. A., Yau, S. J., and Smith, J. P., Effect of norepinephrine and other agents on “Pi incorporation into phospholipids and phosphoproteins of rats and guinea pig brain slices, Trans. Ann. Soc. Neurochem 5: 66a, 1974.Google Scholar
  79. 79.
    Berg, G. R., and Klein, D. C., Norepinephrine increases the [32Pllabelling of a specific phospholipid fraction of post-synaptic pineal membranes, J. Neurochem. 19: 2519–2532, 1972.CrossRefGoogle Scholar
  80. 80.
    Eichberg, J., Shein, H. M., Schwartz, M., and Hauser, G., Stimulation of 32Pi incorporation into phosphatidylinositol and phosphatidylglycerol by catecholamines and ß-adrenergic receptor blocking agents in rat pineal organ cultures, J. Biol. Chem 248: 3615–3622, 1973.PubMedGoogle Scholar
  81. 81.
    Eichberg, J., Shein, H. M., and Hauser, G., Phospholipid metabolism in cultured neuroblastoma and glioma cells incubated with carbamylcholine and norepinephrine, J. Neurochem 24: 67–70, 1975.CrossRefGoogle Scholar
  82. 82.
    Martin, S. E., Mouse brain antigen detected by rat anti-C-1300 antiserum, Nature (London) 249: 71–73, 1974.CrossRefGoogle Scholar
  83. 83.
    Terman, D. S., Stewart, I., Tavel, A., and Kirch, D., Localization of neuroblastoma in vivo with tumor specific antibodies, Cancer Res. 35: 1761–1766, 1975.PubMedGoogle Scholar
  84. 84.
    Bertolini, L., Diamond, L., and Revoltella, R., Modification of growth of neuroblastoma cells in syngenic mice with aldehyde-treated neuroblastoma cells, Cancer Res. 36: 2111–2112, 1976.PubMedGoogle Scholar
  85. 85.
    Byfield, J. E., Zerubavel, R., and Fonkalsrud, E. W., Murine neuroblastoma cured in vivo by an antibody-dependent cellular cytotoxicity reaction, Nature (London) 264: 783–785, 1976.CrossRefGoogle Scholar
  86. 86.
    Akeson, R., and Herschman, H. R., Modulation of cell surface antigens of a murine neuroblastoma, Proc. Natl. Acad. Sci. U.S.A 71: 187–191, 1974.CrossRefGoogle Scholar
  87. 87.
    Jorgensen, A. O., Subrahmanyan, L., Turnbull, C., and Kalnins, V. I., Localization of the neurofilament protein in neuroblastoma cells by immunofluorescent staining, Proc. Natl. Acad. Sci. U.S.A 73: 3192–3196, 1976.CrossRefGoogle Scholar
  88. 88.
    Carlin, S. C., Rosenberg, R. N., VandeVenter, L., and Friedkin, M., Quinazoline antifolates as inhibitors of growth, dihydrofolate reductase, and thymidylate synthetase of mouse neuroblastoma cells in culture, Mol. Pharmacol 10: 194–203, 1974.PubMedGoogle Scholar
  89. 89.
    Sensenbrenner, M., Lodin, Z., Treska, J., Jacob, M., Kage, M. P., and Mandel, P., The cultivation of isolated neurons from spinal ganglia of chick embryo. Z. Zellforsch. Mikrosk. Anat. 98: 538–549, 1969.Google Scholar
  90. 90.
    Lodin, Z., Booher, J., and Kasten, F. H., Phase-contrast cinematographic study of dissociated neurons from embryonic chamber chick dorsal root ganglia cultured in the rose chamber, Exp. Cell Res 60: 27–39, 1970.CrossRefGoogle Scholar
  91. 91.
    Varon, S., and Raiborn, C., Dissociation, fractionation, and culture of chick embryo sympathetic ganglionic cells, J. Neurocytol 1: 211–221, 1972.CrossRefGoogle Scholar
  92. 92.
    Luduena, M. A., Nerve cell differentiation in vitro, Dev. Biol 33: 268–284, 1973.CrossRefGoogle Scholar
  93. 93.
    Sensenbrenner, M., and Mandel, P., Behaviour of neuroblasts in the presence of glial cells, fibroblasts and meningeal cells in culture, Exp. Cell Res 87: 159–167, 1974.CrossRefGoogle Scholar
  94. 94.
    Patterson, P. H., and Chun, L. L. Y., The influence of non-neuronal cells on catecholamine and acetylcholine syntehsis and accumulation in cultures of dissociated sympathetic neurons, Proc. Natl. Acad. Sci. U.S.A 71: 3607–3610, 1974.CrossRefGoogle Scholar
  95. 95.
    Stefanovic, V., Ciesielski-Treska, J., Ebel, A., and Mandel, P., Neuroblasts-glia interaction. The effect of co-cultivation upon ecto-ATPase activity of neuroblastoma and glioma cell, Exp. Cell Res 98: 191–203, 1976.CrossRefGoogle Scholar
  96. 96.
    Giller, E. L., Schrier, B. K., Shainberg, A., Fisk, H. R., and Nelson, P. G., Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cell from mice, Science 182: 588–589, 1973.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kedar N. Prasad
    • 1
  1. 1.University of Colorado Medical CenterDenverUSA

Personalised recommendations