Skip to main content

Assimilation of Glucose in Rat Brain and Metabolic Activities of Various Groups of Brain Proteins

  • Chapter
Protein Metabolism of the Nervous System

Abstract

We often use the expression “structural proteins of brain.” This tacitly implies that these proteins are nonfunctional and are distinguishable from other, or “functional,” proteins of brain. The experiments reported here were undertaken with the aim of securing data which might help to clarity the following points: (1) In what way is the pattern of metabolic interaction between glucose and brain proteins similar to or different from that in other organs? (2) Can the division of brain proteins into functional and structural proteins be shown experimentally? (3) What is the range of molecular weights of the cytoplasmic brain proteins, and how is this range similar to or different from proteins of liver, heart, and blood? (4) Is there any relationship between the molecular weight of these proteins and the rate and extent of assimilation of glucose carbon into these proteins in vivo?

We are grateful to Mrs. A. P. Reynolds for participating in some of these experiments. Our thanks are due to Dr. J. G. Foulks and Dr. M. C. Sutter for discussion, criticism, and help in the preparation of the manuscript. This work has been supported by the Medical Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Vrba, Nature 195, 663–665 (1962).

    Article  PubMed  CAS  Google Scholar 

  2. R. Vrba, M. K. Gaitonde, and D. Richter, J. Neurochem. 9, 465–475 (1962).

    Article  PubMed  CAS  Google Scholar 

  3. R. Vrba, Biochem. J. 105, 927–936 (1967).

    PubMed  CAS  Google Scholar 

  4. R. Vrba, Usp. Sovr. Biol. SSSR 41, 321–352 (1956).

    CAS  Google Scholar 

  5. D. Richter, Brit. Med. Bull. 21, 76–79 (1965).

    CAS  Google Scholar 

  6. A. V. Haroutunian, in: “Problems of Brain Biochemistry” (H. C. Buniatian, ed.), Vol. 2, pp. 152–167, Acad. Sci. Armen. SSR (1966).

    Google Scholar 

  7. H. E Himwich, “Brain Metabolism and Cerebral Disorders,” pp. 24–25, The Williams and Wilkins Co., Baltimore (1951).

    Google Scholar 

  8. J. Dobbing, Physiol. Rev. 41, 130–188 (1961).

    PubMed  CAS  Google Scholar 

  9. R. Steele, J. Biol. Chem. 209, 91–103 (1954).

    PubMed  CAS  Google Scholar 

  10. R. Vrba, Biochem. J. 99, 367–380 (1966).

    PubMed  CAS  Google Scholar 

  11. J. Porath, Pure Appl. Chem. 6, 233–244 (1963).

    Article  CAS  Google Scholar 

  12. O. H. Lowry, N. J. Rosebrough, N. J. Farr, and B. J. Randall, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  13. J. R. Winzler, K. Moldave, M. E. Rafelson, Jr., and H. E. Pearson, J. Biol. Chem. 199, 485–492 (1952).

    CAS  Google Scholar 

  14. R. B. Roberts, J. B. Flexner, and L. B. Flexner, J. Neurochem. 4, 78–90 (1959).

    Article  PubMed  CAS  Google Scholar 

  15. H. Busch, E. Fujiwara, and L. M. Keer, Cancer Res. 20, 50–57 (1960).

    PubMed  CAS  Google Scholar 

  16. A. Beloff-Chain, R. Catanzaro, E. B. Chain, I. Massi, and F. Pocchiari, Proc. Roy. Soc. B 144, 22–28 (1955).

    Article  CAS  Google Scholar 

  17. M. H. Kini and J. H. Quastel, Nature 184, 252–256 (1959).

    Article  PubMed  CAS  Google Scholar 

  18. A. Geiger, Y. Kawakita, and S. S. Barkulis, J. Neurochem. 5, 323–338 (1960).

    Article  PubMed  CAS  Google Scholar 

  19. A. Geiger, N. Horvath, and Y. Kawakita, J. Neurochem. 5, 311–322 (1960).

    Article  PubMed  CAS  Google Scholar 

  20. M. K. Gaitonde, S. A. Marchi, and D. Richter, Proc. Roy. Soc. B 160, 124–136 (1964).

    Article  CAS  Google Scholar 

  21. M. K. Gaitonde, D. R. Dahl, and K. A. C. Elliott, Biochem. J. 94, 345–352 (1965).

    PubMed  CAS  Google Scholar 

  22. E. V. Flock, G. M. Tyce, and C. A. Owen, Jr., J. Neurochem. 13, 1389–1406 (1966).

    Google Scholar 

  23. R. M. O’Neal and R. E. Koeppe, J. Neurochem. 13, 835–847 (1966).

    Article  PubMed  Google Scholar 

  24. P. Lehr and J. Gayet, J. Neurochem. 14, 927–936 (1967).

    Article  PubMed  CAS  Google Scholar 

  25. R. Vrba, H. S. Bachelard, and J. Krawczynski, Nature 197, 869–870 (1963).

    Article  PubMed  CAS  Google Scholar 

  26. H. S. Bachelard, M. K. Gaitonde, and R. Vrba, Biochem. Pharmacol. 15, 1039–1043 (1966).

    Article  PubMed  CAS  Google Scholar 

  27. H. S. Bachelard and J. R. Lindsay, Biochem. Pharmacol. 15, 1053–1058 (1966).

    Article  PubMed  CAS  Google Scholar 

  28. E. V. Flock, G. M. Tyce, and C. A. Owen, Jr., Fed. Proc. 24, 423 (1965).

    Google Scholar 

  29. M. K. Gaitonde and D. Richter, J. Neurochem. 13, 1309–1318 (1966).

    Article  PubMed  CAS  Google Scholar 

  30. R. J. Haslam and H. A. Krebs, Biochem. J. 88, 566–578 (1963).

    PubMed  CAS  Google Scholar 

  31. H. A. Krebs, R. Hems, M. J. Weidemann, and R. N. Speake, Biochem. J. 101, 242–249 (1966).

    PubMed  CAS  Google Scholar 

  32. K. F. Gey, Biochem. J. 64, 145–150 (1956).

    PubMed  CAS  Google Scholar 

  33. J. Krawczynski, H. S. Bachelard, and R. Vrba, Acta Physiol. Polonica 15, 367–372 (1964).

    CAS  Google Scholar 

  34. S. Cobb and J. Talbott, Trans. Assoc. Amer. Physicians 42, 255–262 (1927).

    Google Scholar 

  35. C. L. Evans, “Principles of Human Physiology,” p. 635, J. & A. Churchill, London (1952).

    Google Scholar 

  36. R. Schoenheimer, S. Ratner, and D. Rittenberg, J. Biol. Chem. 130, 703–732 (1939).

    CAS  Google Scholar 

  37. E. B. Chain, F. Larsson, and F. Pocchiari, Proc. Roy. Soc. B 152, 283–289 (1960).

    Article  CAS  Google Scholar 

  38. J. Monod, J.-P. Changeux, and F. Jacob, J. Mol. Biol. 6, 306–329 (1963).

    Article  PubMed  CAS  Google Scholar 

  39. F. M. Matschinsky and J. E. Ellerman, J. Biol. Chem. 243, 2730–2736 (1968).

    PubMed  CAS  Google Scholar 

  40. H. Waelsch, Adv. Prot. Chem. 6, 299–341 (1951).

    Article  CAS  Google Scholar 

  41. C. Long, Ed., “Biochemists Handbook,” p. 853, E. & F. N. Spon, London (1961).

    Google Scholar 

  42. K. A. C. Elliott and Y. Yoshino, Proc. Canad. Fed. Biol. Soc. 1968, 86.

    Google Scholar 

  43. A. Lajtha and J. Toth, Biochem. Biophys. Res. Commun. 23, 294–298 (1966).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Vrba, R., Cannon, W. (1970). Assimilation of Glucose in Rat Brain and Metabolic Activities of Various Groups of Brain Proteins. In: Lajtha, A. (eds) Protein Metabolism of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8109-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8109-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8111-2

  • Online ISBN: 978-1-4684-8109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics