Advertisement

Insoluble Proteins of the Synaptic Plasma Membrane

  • H. R. Mahler
  • Carl W. Cotman

Abstract

The presynaptic plasma membrane of a CNS neuron is that part of its limiting membrane that confines the terminal knob or bouton of its axonal process.(l, 2) Within the space defined by this structure are contained a variety of components believed to be intimately connected with its function.

Keywords

Synaptic Vesicle Insoluble Protein NADH Oxidase Synaptic Membrane Negative Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Whittaker, Proc. Natl. Acad. Sci. U.S. 60, 1081 (1968).CrossRefGoogle Scholar
  2. 2.
    A. L. Lehninger, Proc. Natl. Acad. Sci. U.S. 60, 1069 (1968).CrossRefGoogle Scholar
  3. 3.
    B. L. Palay and G. E. Palade, J. Biophys. Biochem. Cytol. 1, 69 (1955).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Fatt and B. Katz, J. Physiol. 117, 109 (1952).PubMedGoogle Scholar
  5. 5.
    B. Katz, and R. Miledi, J. Physiol. 168, 389 (1963).PubMedGoogle Scholar
  6. 6.
    K. Kusano, D. R. Livengood, and R. Werman, J. Gen. Physiol. 50, 2579 (1967).PubMedCrossRefGoogle Scholar
  7. 7.
    D. F. Parsons, in: “Proc. 7th Canadian Cancer Res. Conf.” p. 193, Pergamon Press, Oxford (1966).Google Scholar
  8. 8.
    D. F. H. Wallach, in:Specificity of Cell Surfaces ( B. D. Davis and L. Warren, eds.), pp. 129–163, Prentice-Hall, Englewood Cliffs, New Jersey (1967).Google Scholar
  9. 9.
    L. Warren, M. C. Glick, and M. K. Nass, in: Specificity of Cell Surfaces ( B. D. Davis, and L. Warren, eds.), pp. 109–127, Prentice-Hall, Englewood Cliffs, New Jersey (1967).Google Scholar
  10. 10.
    C. W. Cotman, Structure and function of the synaptic complex from rat brain, PhD Dissertation, Indiana University (1967).Google Scholar
  11. 11.
    C. Cotman, H. R. Mahler, and N. G. Anderson, Biochim. Biophys. Acta 163, 272 (1968).Google Scholar
  12. 12.
    C. W. Cotman, H. R. Mahler, and T. E. Hugli, Arch. Biochem. Biophys. 126, 821 (1968).PubMedCrossRefGoogle Scholar
  13. 13.
    E. C. Gray and V. P. Whittaker, J. Anat. (London) 96, 79 (1962).Google Scholar
  14. 14.
    E. De Robertis, A. Pellegrino de Iraldi, G. Rodriguez de Lores Arnaiz, and L. Salganicoff, J. Neurochem. 9, 23 (1962).CrossRefGoogle Scholar
  15. 15.
    V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirkland, Biochem. J. 90, 293 (1964).PubMedGoogle Scholar
  16. 16.
    E. De Robertis, G. Rodriguez de Lores Arnaiz, L. Salganikoff, A. Pellegrino de Iraldi, and L. M. Zieher, J. Neurochem. 10, 225 (1963).CrossRefGoogle Scholar
  17. 17.
    G. Rodriguez de Lores Arnaiz, M. Alberic, and E. De Robertis, J. Neurochem. 14, 215 (1967).CrossRefGoogle Scholar
  18. 17a.
    E. G. Lapetina, E. F. Soto, and E. De Robertis, Biochim. Biophys. Acta 135, 33 (1967).PubMedCrossRefGoogle Scholar
  19. 18.
    O. Lindberg and L. Ernster, in: “Methods of Biochemical Analysis” (D. Glick, ed.), Vol. 3, Interscience Publishers, New York (1958).Google Scholar
  20. 19.
    G. Danner, P. Siekevitz, and G. E. Palade, J. Cell Biol. 30, 97 (1966).CrossRefGoogle Scholar
  21. 20.
    H. M. Duncan and B. Mackler, J. Biol. Chem. 241, 1694 (1966).PubMedGoogle Scholar
  22. 21.
    G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, Biochem. Pharmacol. 7, 88 (1961).PubMedCrossRefGoogle Scholar
  23. 22.
    J. R. Corbett, private communication.Google Scholar
  24. 23.
    O. Z. Sellinger, R. L. Rucker, and F. de Balbian Verster, J. Neurochem. 11, 271 (1964).PubMedCrossRefGoogle Scholar
  25. 24.
    R. J. A. Rosie, Biochem. J. 96, 404 (1965).Google Scholar
  26. 25.
    J. H. Luft, J. Biophys. Biochem. Cytol.9 409 (1961).Google Scholar
  27. 26.
    D. P. Pease, “Histological Techniques for Electron Microscopy,” 2nd Ed., p. 37, Academic Press, New York (1967).Google Scholar
  28. 27.
    C. W. Cotman and H. R. Mahler, Arch. Biochem. Biophys. 120, 384 (1967).PubMedCrossRefGoogle Scholar
  29. 28.
    K. von Hungen, H. R. Mahler, and W. J. Moore, J. Biol. Chem. 243, 1415 (1968).Google Scholar
  30. 29.
    A. T. Campagnoni and H. R. Mahler, Biochemistry 6, 956 (1967).PubMedCrossRefGoogle Scholar
  31. 30.
    L. A. Autilio, W. T. Norton, and R. D. Terry, J. Neurochem. 11, 17 (1964).PubMedCrossRefGoogle Scholar
  32. 31.
    P. Emmelot, C. J. Bos, E. L. Benedett, and P. H. Rumke, Biochim. Biophys. Acta 90, 126 (1964).PubMedCrossRefGoogle Scholar
  33. 32.
    D. M. Nevelle, J. Biophys. Biochem. Cytol. 8, 413 (1960).CrossRefGoogle Scholar
  34. 33.
    L. Warren, M. C. Glick, and M. K. Nass, J. Cell Physiol. 68, 269 (1966).CrossRefGoogle Scholar
  35. 34.
    B. Attardi and G. Attardi, Proc. Natl. Acad. Sci. U.S. 58, 105 (1967).CrossRefGoogle Scholar
  36. 35.
    A. Karlin, J. Cell Biol. 25, 159 (1965).PubMedCrossRefGoogle Scholar
  37. 36.
    D. F. Parsons, G. R. Williams, and B. Chance, Ann. N.Y. Acad. Sci. 137, 643 (1966).PubMedCrossRefGoogle Scholar
  38. 37.
    E. G. Lapetina, E. F. Soto, and E. de Robertis, J. Neurochem. 15, 437 (1968).PubMedCrossRefGoogle Scholar
  39. 38.
    C. DeDuve, in,: “Enzyme Cytology” (D. B. Roodyn, ed.), pp. 1–26, Academic Press, New York (1967).Google Scholar
  40. 39.
    A. Giuditta and H. J. Strecker, J. Neurochem. 5, 50 (1959); Biochim. Biophys. Acta 67, 317 (1963).CrossRefGoogle Scholar
  41. 40.
    A. Inouye and Y. Shinagama, J. Neurochem. 12, 803 (1965).PubMedCrossRefGoogle Scholar
  42. 41.
    I. M. Vassiletz, E. F. Derkatchev, and S. A. Neifakh, Exp. Cell Res. 46, 419 (1967).PubMedCrossRefGoogle Scholar
  43. 42.
    W. Straus, in: “Enzyme Cytology” ( D. B. Roodyn, ed.), pp. 244–245, Academic Press, New York (1967).Google Scholar
  44. 43.
    P. L. Sarvant, S. Shibko, U. S. Kamta, and A. L. Tappel, Biochim. Biophys. Acta 85, 82 (1964).Google Scholar
  45. 44.
    P. B. Gaban, in: Int. Rev. Cytol. (G. H. Bourne, and J. F. Danielli, eds.), Vol. 21 (1967).Google Scholar
  46. 45.
    M. K. Gordon, K. G. Bench, G. G. Deanin, and M. W. Gordon, Nature 217 523 (1968).Google Scholar
  47. 46.
    J. C. Skou, Physiol. Rev. 45, 596 (1965).Google Scholar
  48. 47.
    S. H. Richardson, H. O. Hultin, and D. E. Green, Proc. Natl. Acad. Sci. U.S. 50, 821 (1963).CrossRefGoogle Scholar
  49. 48.
    R. S. Criddle, R. M. Bock, D. E. Green, and H. D. Tisdale, Biochemistry 1, 827 (1962).PubMedCrossRefGoogle Scholar
  50. 49.
    S. H. Richardson, H. O. Hultin, and S. Fleischer, Arch. Biochem. Biophys. 105, 254 (1964).PubMedCrossRefGoogle Scholar
  51. 50.
    R. S. Criddle, D. L. Edwards, and T. G. Petersen, Biochemistry 5, 578 (1966).PubMedCrossRefGoogle Scholar
  52. 51.
    D. O. Woodward and K. D. Munkres, in:Organizational Biosynthesis( H. J. Vogel, J. O. Lampen, and V. Bryson, eds.), p. 489, Academic Press, New York (1967).Google Scholar
  53. 52.
    D. O. Woodward, Fed. Proc. 27, 1167 (1968).Google Scholar
  54. 53.
    D. E. Green, N. F. Haard, G. Lenaz, and H. I. Silman, Proc. Natl. Acad. Sci. U.S. 60, 277 (1968).CrossRefGoogle Scholar
  55. 54.
    G. Lenaz, N. F. Haard, A. Lauwers, D. W. Allmann, and D. E. Green, Arch. Biochem. Biophys. 126, 746 (1968).PubMedCrossRefGoogle Scholar
  56. 55.
    B. Droz and C. P. Leblond, J. Comp. Neurol. 121, 325 (1963).PubMedCrossRefGoogle Scholar
  57. 56.
    B. Droz., J. Physiol. (Paris) 58, 511 (1966).Google Scholar
  58. 57.
    S. H. Barondes, Science 146, 779 (1964); J. Neurochem. 13, 721 (1966).CrossRefGoogle Scholar
  59. 58.
    S. H. Barondes, J. Neurochem. 15, 343 (1968).CrossRefGoogle Scholar
  60. 59.
    B. Graftstein, Science 157, 196 (1967).CrossRefGoogle Scholar
  61. 60.
    B. S. McEwen and B. Graftstein, J. Cell Biol. 38, 494 (1968).PubMedCrossRefGoogle Scholar
  62. 61.
    J. A. Bray and L. Austin, J. Neurochem. 15, 731 (1968).PubMedCrossRefGoogle Scholar
  63. 62.
    S. Ochs, this volume, Chapter 13.Google Scholar
  64. 63.
    M. L. Campbell, H. R. Mahler, W. J. Moore, and S. Tewari, Biochemistry 5, 926 (1966).CrossRefGoogle Scholar
  65. 64.
    H. S. Bachelard, Biochem. J. 100, 131 (1966).Google Scholar
  66. 65.
    M. W. Gordon and G. G. Deanen, J. Biol. Chem. 243, 4222 (1968).PubMedGoogle Scholar
  67. 66.
    T. K. Ray, I. Liebermann, and A. L. Lansing, Biochem. Biophys. Res. Commun. 31, 54 (1968).PubMedCrossRefGoogle Scholar
  68. 67.
    F. Orrego and F. Lipmann, J. Biol. Chem. 242, 665 (1967).PubMedGoogle Scholar
  69. 68.
    L. A. Autilio, S. H. Appel, P. Pettis, and P. L. Gambetti, Biochemistry 7, 2615 (1968).PubMedCrossRefGoogle Scholar
  70. 69.
    I. G. Morgan and L. Austin, J. Neurochem. 15, 41 (1968).PubMedCrossRefGoogle Scholar
  71. 70.
    L. Austin, I. G. Morgan, and J. J. Bray, this volume, Chapter 12.Google Scholar
  72. 71.
    H. R. Mahler and B. J. Brown, Arch. Biochem. Biophys. 125, 387 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • H. R. Mahler
    • 1
    • 2
  • Carl W. Cotman
    • 2
  1. 1.Chemical LaboratoriesIndiana UniversityBloomingtonUSA
  2. 2.Division of PsychobiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations