Inhibition of Brain Protein Synthesis

  • Stanley H. Appel


An understanding of the molecular basis of normal and altered neurological function represents one of the significant challenges of modern neurology. In many neurologic disorders we can specify the enzymatic defect and the resultant alterations in precursors and products. But even in conditions so defined it remains unclear what altered brain functions produce the devastating neurologic disorder. The amino acidurias serve as an excellent example of disorders whose enzymatic and neuropathologie defects are reasonably well delineated, but whose brain dysfunction cannot be defined biochemically.(1) Alterations in neurohormones and in mitochondrial function have been implicated, but not proven.(2–6) For our present purposes the most intriguing hypotheses relate to alterations in protein synthesis which may occur as the result of amino acid imbalances.(7,8) In this report we review some of our experimental data which confirm reported alterations in amino acid transport produced by amino acid imbalances,(9–12) and suggest that both by inhibition of transport and by interference with amino acid activation, a significant inhibition of protein synthesis may occur in vitro Assuming that protein synthesis is a rate-limiting reaction in brain function, studies of amino acid inhibition in vitro may represent a meaningful approach to the understanding of neurologic dysfunction at a molecular level.


Potassium Cyanide Maple Syrup Urine Disease Amino Acid Activation Amino Acid Inhibition Leucine Isoleucine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, “The Metabolic Basis of Inherited Disease,” 2nd ed., McGraw-Hill, New York (1966).Google Scholar
  2. 2.
    J. H. Fellman, Proc. Soc. Exp. Biol. Med 93, 413 (1956).Google Scholar
  3. 3.
    A. N. Davison and M. Sandler, Nature 181, 186 (1958).PubMedCrossRefGoogle Scholar
  4. 4.
    R. E. Tashian, Metabolism 10, 393 (1961).Google Scholar
  5. 5.
    R. K. Howell and M. Lee, Proc. Soc. Exp. Biol. Med 113, 660 (1963).PubMedGoogle Scholar
  6. 6.
    H. E. Himwich and J. F. Fazekes, Arch. Neurol. Psychiat 51, 73 (1944).Google Scholar
  7. 7.
    I. Bickis, J. P. Kennedy, and J. H. Quastel, Nature 179, 1124 (1957).PubMedCrossRefGoogle Scholar
  8. 8.
    S. H. Appel, N.Y. Acad. Sci. (Trans.) 29, 63 (1966).CrossRefGoogle Scholar
  9. 9.
    G. Guroff and S. Udenfriend, J. Biol. Chem 237, 803 (1962).PubMedGoogle Scholar
  10. 10.
    G. Guroff, W. King, and S. Udenfriend, J. Biol. Chem 236, 1773 (1961).PubMedGoogle Scholar
  11. 11.
    K. D. Neame, J. Neurochem 11, 67 (1964).CrossRefGoogle Scholar
  12. 12.
    A. Lajtha, G. Levi, and R. Blasberg, in: “Brain Edema” ( I. Klatzo and F. Seitelberger, eds.), pp. 367–381, Springer-Verlag, New York (1967).Google Scholar
  13. 13.
    S. H. Appel, W. Davis, and S. Scott, Science 157, 836 (1967).PubMedCrossRefGoogle Scholar
  14. 14.
    J. B. Loftfield and E. A. Eigner, Biochem. Biophys. Acta 72, 372 (1963).CrossRefGoogle Scholar
  15. 15.
    F. H. Bergman, P. Berg, and M. H. Dieckman, J. Biol. Chem 236, 173 (1961).Google Scholar
  16. 16.
    A. L. Prensky and H. W. Moser, J. Neurochem 11, 77 (1964).CrossRefGoogle Scholar
  17. 17.
    J. B. Flexner, L. B. Flexner, and E. Stellar, Science 141, 57 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    B. W. Agranoff, R. E. Davis, and J. J. Brink, Proc. Natl. Acad. Sci. U.S 54, 788 (1965).CrossRefGoogle Scholar
  19. 19.
    S. Barondes and H. D. Cohen, Science 151, 594 (1966).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Autilio, S. H. Appel, P. Pettis, and P. L. Gambetti, Biochemistry 7, 2615 (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    A. V. Escueta and S. H. Appel, Biochemistry, 8, 725 (1969).PubMedCrossRefGoogle Scholar
  22. 22.
    S. H. Appel, L. Autilio, B. W. Festoff, and A. V. Escueta, “Biochemical studies of synapses in vitro. III. Ionic activation of protein synthesis,” J. Biol. Chem 244, 3166 (1969).PubMedGoogle Scholar
  23. 23.
    S. Snyderman, P. M. Norton, E. Roitman, and L. Holt, Jr., Pediatrics 34, 454 (1964).PubMedGoogle Scholar
  24. 24.
    P. Dean and E. Mathews, Nature 219, 389 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Stanley H. Appel
    • 1
  1. 1.Division of NeurologyDuke University Medical CenterDurhamUSA

Personalised recommendations