Advertisement

Protein Synthesis and Memory Formation

  • Bernard W. Agranoff

Abstract

A role for macromolecules in the storage of behavioral information has long been championed.(1–5) This postulated role remains at present highly inferential, even though many investigators have attempted to confirm or to disprove it. Experiments have thus far produced too few constraints for those who would theorize on the biological basis of learning and memory. While we are clearly at a very speculative stage, the ranks of experimenters are growing, and with them the firm hope that an assault on this least-known aspect of living systems is underway.

Keywords

Protein Synthesis Memory Formation Intracerebral Injection Intracranial Injection Amnestic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Katz and W. C. Halstead, Protein organization and mental function, Comp. Psych. Monographs 20, 1–38 (1950).Google Scholar
  2. 2.
    R. W. Gerard, The fixation of experience, in: “Brain Mechanisms and Learning” (J. F. Delafresnaye, A. Fessard, R. W. Gerard, and J. Konorski, eds.), pp. 21–32, Blackwell, Oxford (1961).Google Scholar
  3. 3.
    H. Hydén, The neuron, in: “The Cell: Biochemistry, Physiology and Morphology” (J. Brachet and A. E. Mirsky, eds.), Vol. 4, pp. 215–323, Academic Press, New York (1960).Google Scholar
  4. 4.
    W. Dingman and M. B. Sporn, Molecular theories of memory, Science 144, 26–28 (1964).PubMedCrossRefGoogle Scholar
  5. 5.
    F. O. Schmitt, Molecules and memory, New Scientist 23, 643–645 (1964).Google Scholar
  6. 6.
    H. Hydén and P. W. Lange, Protein synthesis in the hippocampal pyramidal cells of rats during a behavioral test, Science 159, 1370–1373 (1968).PubMedCrossRefGoogle Scholar
  7. 7.
    J. W. Zemp, J. E. Wilson, K. Schlesinger, W. O. Boggan, and E. Glassman, Brain function and macromolecules, I. Incorporation of uridine into RNA of mouse brain during short-term training experience, Proc. Natl. Acad. Sci. U.S. 55, 1423–1431 (1966).CrossRefGoogle Scholar
  8. 8.
    M. B. Yarmolinsky and G. L. de la Haba, Inhibition by puromycin of amino acid incorporation into protein, Proc. Natl. Acad. Sci. U.S. 45, 1721–1729 (1959).CrossRefGoogle Scholar
  9. 9.
    D. Nathans, Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains, Proc. Natl. Acad. Sci. U.S. 51, 585–592 (1964).CrossRefGoogle Scholar
  10. 10.
    B. Colombo, L. Felicetti, and C. Baglioni, Inhibition of protein synthesis by cycloheximide in rabbit reticulocytes, Biochem. Biophys. Res. Commun. 18, 389–395 (1965).PubMedCrossRefGoogle Scholar
  11. 11.
    J. B. Flexner, L. B. Flexner, and E. Stellar, Memory in mice as affected by intra-cerebral puromycin, Science 141, 57–59 (1963).PubMedCrossRefGoogle Scholar
  12. 12.
    L. B. Flexner, Loss of memory in mice as related to regional inhibition of cerebral protein synthesis, Texas Rep. Biol. Med. 24, 3–19 (1966).Google Scholar
  13. 13.
    M. W. Gordon and G. C. Deanin, Protein synthesis by isolated rat brain mitochondria and synaptosomes, J. Biol. Chem. 243, 4222–4226 (1968).PubMedGoogle Scholar
  14. 14.
    L. B. Flexner and J. B. Flexner, Effect of acetoxycycloheximide and of an acetoxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice, Proc. Natl. Acad. Sci. U.S. 55, 369–374 (1966).CrossRefGoogle Scholar
  15. 15.
    L. B. Flexner, J. B. Flexner, and R. B. Roberts, Memory in mice analyzed with antibiotics, Science 155, 1377–1383 (1967).PubMedCrossRefGoogle Scholar
  16. 16.
    L. B. Flexner and J. B. Flexner, Studies on memory: the long survival of peptidylpuromycin in mouse brain, Proc. Natl. Acad. Sci. U.S. 60, 923–927 (1968).CrossRefGoogle Scholar
  17. 17.
    P. Gambetti, N. K. Gonatas, and L. B. Flexner, The fine structure of puromycininduced changes in mouse entorhinal cortex, J. Cell Biol. 36, 379–390 (1968).PubMedCrossRefGoogle Scholar
  18. 18.
    J. B. Flexner and L. B. Flexner, Restoration of expression of men or j lost after treatment with puromycin, Proc. Natl. Acad. Sci. U.S. 57, 1651–1654 (1967).CrossRefGoogle Scholar
  19. 19.
    S. H. Barondes and H. D. Cohen, Comparative effects of cycloheximide and puromycin on cerebral protein synthesis and consolidation of memory in mice, Brain Res. 4, 44–51 (1967).PubMedCrossRefGoogle Scholar
  20. 20.
    H. D. Cohen, F. Ervin, and S. H. Barondes, Puromycin and cycloheximide: different effects on hippocampal electrical activity, Science 154, 1557–1558 (1966).PubMedCrossRefGoogle Scholar
  21. 21.
    H. D. Cohen and S. H. Barondes, Puromycin effect on memory may be due to occult seizures, Science 157, 333–334 (1967).PubMedCrossRefGoogle Scholar
  22. 22.
    S. H. Barondes and H. D. Cohen, Delayed and sustained effect of acetoxycycloheximide on memory in mice, Proc. Natl. Acad. Sci. U.S. 58, 157–164 (1967).CrossRefGoogle Scholar
  23. 23.
    B. W. Agranoff, R. E. Davis, and J. J. Brink, Memory fixation in the goldfish, Proc. Natl. Acad. Sci. U.S. 54, 788–793 (1965).CrossRefGoogle Scholar
  24. 24.
    B. W. Agranoff, R. Davis, and J. J. Brink, Chemcal studies on memory fixation in goldfish, Brain Res. 1, 303–309 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    B. W. Agranoff, R. E. Davis L. Casola, and R. Lim, Actinomycin D blocks formation of memory of shock avoidance in the goldfish, Science 158, 1600–1601 (1967).PubMedCrossRefGoogle Scholar
  26. 26.
    B. W. Agranoff, Agents that block memory, in: “The Neurosciences: A Study Program” (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 756–764, The Rockefeller University Press, New York (1967).Google Scholar
  27. 27.
    J. J. Brink, R. E. Davis, and B. W. Agranoff, Effects of puromycin, acetoxycycloheximide, and actinomycin D on protein synthesis in goldfish brain, J. Neurochem. 13, 889–896 (1966).PubMedCrossRefGoogle Scholar
  28. 28.
    R. E. Davis and B. W. Agranoff, Stages of memory formation in goldfish: evidence for an environmental trigger, Proc. Natl. Acad. Sci. U.S. 55, 555–559 (1966).CrossRefGoogle Scholar
  29. 29.
    J. E. P. Toman, Drugs effective in convulsive disorders, in: “The Pharmacological Basis of Therapeutics” (L. S. Goodman and A. Gilman, eds.), 3rd ed., pp. 215–236, MacMillan, New York (1965).Google Scholar
  30. 30.
    B. W. Agranoff, unpublished.Google Scholar
  31. 31.
    L. Casola, R. Lim, R. E. Davis, and B. W. Agranoff, Behavioral and biochemical effects of intracranial injection of cytosine arabinoside in goldfish, Proc. Natl. Acad. Sci. U.S. 60, 1389–1395 (1968).CrossRefGoogle Scholar
  32. 32.
    L. B. Flexner, J. B. Flexner, and R. B. Roberts, Stages of memory in mice treated with acetoxycycloheximide before or immediately after learning, Proc. Natl. Acad. Sci. U.S. 56, 730–735 (1966).CrossRefGoogle Scholar
  33. 33.
    B. W. Agranoff, Recent studies on the stages of memory formation in goldfish, in: “Molecular Approaches to Learning and Memory” (W. L. Bryne, ed.), pp. 35–39, Academic Press, New York (1969).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Bernard W. Agranoff
    • 1
  1. 1.Mental Health Research Institute and Department of Biological ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations