Advertisement

Effects of Actinomycin D on RNA Transcription, Protein Synthesis, and Nuclear Structure

  • Harold Koenig
  • Chung Y. Lu
  • Stanley Jacobson
  • Panna Sanghavi
  • Rajinder Nayyar

Abstract

Neurons and glia are sites of active turnover of RNA and protein. (1,2) These metabolic activities are of fundamental importance for the biosynthetic renewal of a wide assortment of structural, soluble, enzyme, and other proteins necessary for maintenance of normal neural structure and function. However, the relation of RNA and protein synthesis to neurophysiological functions such as excitation, inhibition, nerve impulse conduction, and synaptic transmission has not been clearly defined. Earlier studies(3–6) from this laboratory showed that the pyrimidine analogs, 5-fluoroorotic acid and 5-fluorouridine, after a latent period of several days cause severe neurophysiological disturbances and neuropathological lesions in cat spinal cord concomitant with impaired synthesis of RNA and protein. Edström and Grampp(7) found that a crustacean stretch receptor neuron could generate action potentials in vitro for 12–24 hr after RNA synthesis was blocked by actinomycin D. Cohen and Barondes(8) were able to inhibit RNA synthesis in rat brain by intracerebral injection of AMD without adversely affecting learning in short-term experiments.

Keywords

Spinal Cord Subcellular Fraction Nuclear Change Dense Chromatin Osmiophilic Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Koenig, J. Biochem. Biophys. Cytol. 4, 785–792 (1958).CrossRefGoogle Scholar
  2. 2.
    H. Koenig, in: “Morphological and Biochemical Correlates of Neural Activity” ( M. M. Cohen and R. S. Snider, eds.), 39–56, Hoeber, New York (1964).Google Scholar
  3. 3.
    H. Koenig, Science 127,1238–1239 (1958).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Koenig, Arch. Neurol. 2 ,463–475 (1960).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Koenig,in: “Response of the Nervous System to Ionizing Radiation”( T. Haley and R. Snider, eds.), pp. 109–121, Academic Press, New York (1962).Google Scholar
  6. 6.
    H. Koenig, in: “International Review of Neurobiology” (C. C. Pfeiffer and J. R. Smythies, eds.), Vol. 10, 199–230, Academic Press, New York (1967).Google Scholar
  7. 7.
    J.-E. Edström and W. Grampp, J. Neurochem. 12 ,735–742 (1965).PubMedCrossRefGoogle Scholar
  8. 8.
    H. D. Cohen and S. Barondes, J. Neurochem. 13, 207–212 (1966).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Reich and I. H. Goldberg, in: “Progress in Nùcleic Acid Research and Molecular Biology” (J. N. Davidson and W. E. Cohn, eds.), Vol. 3, pp. 184–235, Academic Press, New York (1964).Google Scholar
  10. 10.
    H. Koenig and S. Jacobson, J. Cell Biol. 31, 61A - 62A (1966).Google Scholar
  11. 11.
    H. Koenig, C. Y. Lu, and S. Jacobson, Fed. Proc. 26, 291 (1967).Google Scholar
  12. 12.
    H. Koenig, C. Y. Lu, S. Jacobson, P. Sanghavi, and R. Nayyar, submitted for publication.Google Scholar
  13. 13.
    H. Koenig and C. Y. Lu, Trans. Am. Neurol. Assoc. 92, 250–252 (1967).PubMedGoogle Scholar
  14. 14.
    H. Koenig, in: “Motor Neuron Disease: Research on Amyotrophie Lateral Sclerosis and Related Disorders” ( F. H. Norris, Jr., and L. T. Kurland, eds.), pp. 347–368, Grune and Stratton, New York (1968).Google Scholar
  15. 15.
    R. E. Smith and M. G. Farquhar, Nature 200, 691 (1963).PubMedCrossRefGoogle Scholar
  16. 16.
    W. C. Hutchinson and H. N. Monro, The Analyst 86, 768–315 (1961).CrossRefGoogle Scholar
  17. 17.
    G. Ceriotti, J. Biol. Chem. 214, 59–70 (1955).PubMedGoogle Scholar
  18. 18.
    K. W. Giles and A. Myers, Nature 206, 93 (1965).CrossRefGoogle Scholar
  19. 19.
    R. W. Hendler, Anal. Biochem. 7, 110–120 (1964).CrossRefGoogle Scholar
  20. 20.
    C. W. Dingman and M. B. Sporn, Science 149, 2052–2054 (1965).CrossRefGoogle Scholar
  21. 21.
    S. H. Appel, Nature 207, 1163 (1965).CrossRefGoogle Scholar
  22. 22.
    P. Sanghavi and H. Koenig, unpublished observations.Google Scholar
  23. 23.
    E. Reich, R. M. Franklin, A. J. Shatkin, and E. L. Tatum, Proc. Natl. Acad. Sci. U.S. 48, 1238–1245 (1962).CrossRefGoogle Scholar
  24. 24.
    D. L. Kirk, Proc. Natl. Acad. Sci. U.S. 54, 1345–1353 (1965).Google Scholar
  25. 25.
    T. Staehelin, F. O. Wettstein, and H. Noll, Science 140, 180 (1963).PubMedCrossRefGoogle Scholar
  26. 26.
    S. H. Appel, Nature 213, 1253–1254 (1967).Google Scholar
  27. 27.
    R. Wiesner, G. Acs, E. Reich, and A. Shafiq, J. Cell Biol. 27, 47 (1965).PubMedCrossRefGoogle Scholar
  28. 28.
    G. A. Stewart and E. Farber, J. Biol. Chem. 243, 4479–4485 (1968).PubMedGoogle Scholar
  29. 29.
    D. M. Dawson, J. Neurochem. 14, 939–946 (1967).Google Scholar
  30. 30.
    M. N. Goldstein, I. J. Slotnick, and L. J. Journey, Ann. N. Y. Acad. Sci. 89, 474–483 (1960).PubMedCrossRefGoogle Scholar
  31. 31.
    B. J. Stevens, J. Ultrastruct. Res. 11, 329–353 (1964).Google Scholar
  32. 32.
    K. W. Jones and T. R. Elsdale, J. Cell Biol. 21, 245–252 (1964).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Izawa, V. S. Allfrey, and A. E. Mirsky, Proc. Natl. Acad. Sci. U.S. 49, 544–551 (1963).CrossRefGoogle Scholar
  34. 34.
    A.-M. Jézéquel and W. Bernhard, J. Microscopie 3, 279–296 (1964).Google Scholar
  35. 35.
    H. T. Jhee, S. S. Han, and J. K. Avery, Am. J. Anat. 116, 631–651 (1965).PubMedCrossRefGoogle Scholar
  36. 36.
    G. E. Schoefl, J. Ultrastruct. Res. 10, 224–243 (1964).Google Scholar
  37. 37.
    A. Torvik and A. Heding, Acta Neuropath. 9, 146–157 (1967).PubMedCrossRefGoogle Scholar
  38. 38.
    R. Haselkorn, Science 143, 682 (1964).PubMedCrossRefGoogle Scholar
  39. 39.
    W. Kersten, H. Kersten, and W. Szybalski, Biochemistry 5, 236–244 (1966).PubMedCrossRefGoogle Scholar
  40. 40.
    D. M. Crothers, S. L. Sabol, D. I. Ratner, and W. Müller, Biochemistry 7, 1817–1823 (1968).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Koenig and C. Y. Lu, J. Histochem. Cytochem., 17, 199–200 (1969).Google Scholar
  42. 42.
    H. Koenig and C. Y. Lu, unpublished observations.Google Scholar
  43. 43.
    J. Frenster, Nature 206, 680–681 (1965).PubMedCrossRefGoogle Scholar
  44. 44.
    F. Dolbeare and H. Koenig, J. Cell Biol. 39, 35a (1968).CrossRefGoogle Scholar
  45. 45.
    R. P. Perry, Exp. Cell Res. 29, 400–406 (1963).CrossRefGoogle Scholar
  46. 46.
    H. Koenig, unpublished observations.Google Scholar
  47. 47.
    R. Nayyar and H. Koenig, J. Cell Biol. 49, 99a ( 1968.Google Scholar
  48. 48.
    D. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Harold Koenig
    • 1
    • 2
  • Chung Y. Lu
    • 1
    • 2
  • Stanley Jacobson
    • 1
    • 2
  • Panna Sanghavi
    • 1
    • 2
  • Rajinder Nayyar
    • 1
    • 2
  1. 1.Neurology ServiceV A Research HospitalChicagoUSA
  2. 2.Department of NeurologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations