Advertisement

Regulation by Amino Acids of Protein Synthesis in a Cell-Free System from Immature Rat Brain: Stimulatory Effect of γ-Aminobutyric Acid and Glycine

  • Claude F. Baxter
  • Sujata Tewari

Abstract

There are several steps along the metabolic pathways of protein synthesis and degradation which can be regulated, directly or indirectly, by substances of low molecular weight. These include reactions at the operon level, where transcription of DNA into RNA may be affected,(1) and reactions at the substrate level, where the overabundance or short supply of a specific amino acid may act as a regulatory factor.(2–4) Recent data which hint at an interrelationship between neurochemical transmitter substances and protein metabolism(5,6) are of particular physiological interest. If acetylcholine, catecholamines, γ-aminobutyric acid (GABA), or any other potential neurochemical transmitter were to modify protein metabolism at or near nerve endings, one could envision numerous mechanisms by which the repeated use of a specific neuronal pathway would lead initially to changes in the local rate of protein synthesis, and, subsequently, perhaps, to an alteration in the “connectivity” or conductivity of these or adjacent neuronal pathways. The mechanisms would be similar to some that have been proposed to explain certain aspects of learning and habituation.(7)

Keywords

Amino Acid Mixture Label Amino Acid Leucine Incorporation Amino Acid Substrate Amino Acid Incorporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. R. Cohen, Biol. Rev. 41, 503–506 (1966).CrossRefGoogle Scholar
  2. 2.
    H. Borsook, E. H. Fischer, and G. Keighley, J. Biol. Chem. 229, 1059–1070 (1957).PubMedGoogle Scholar
  3. 3.
    B. M. Hanking and S. Roberts, Biochim. Biophys. Acta 104, 427–438 (1965).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Fleck, J. Shepherd, and H. N. Munro, Science 150, 628–629 (1965).PubMedCrossRefGoogle Scholar
  5. 5.
    D. B. Peakall, Proc. Soc. Exp. Biol. Med. 126, 198–201 (1967).Google Scholar
  6. 6.
    M. K. Campbell, H. R. Mahler, W. J. Moore, and S. Tewari, Biochmistry 5, 1174–1184 (1966).CrossRefGoogle Scholar
  7. 7.
    E. R. Kandel and W. A. Spencer, Physiol. Rev. 48, 65–134 (1968).PubMedGoogle Scholar
  8. 8.
    S. Tewari and C. F. Baxter, J. Neurochem., 16, 171–180 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    A. J. Munro, R. J. Jackson, and A. Korner, Biochem. J. 92, 289–299 (1964).PubMedGoogle Scholar
  10. 10.
    M. B. Hoagland, M. L. Stephenson, J. F. Scott, L. I. Hecht, and P. C. Jamicnik, J. Biol. Chem. 231, 241–257 (1958).PubMedGoogle Scholar
  11. 11.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  12. 12.
    P. N. Campbell and J. R. Sargent, in: “Techniques in Protein Biosynthesis” (P. N. Campbell and J. R. Sargent, eds.), Vol. 1, pp. 301–303, Academic Press, New York (1967).Google Scholar
  13. 13.
    S. Lǿvtrup and T. Zelander, Exp. Cell Res. 27, 468–473 (1962).CrossRefGoogle Scholar
  14. 14.
    M. R. V. Murthy and D. A. Rappoport, Biochim. Biophys. Acta 95, 121–131 (1965).PubMedGoogle Scholar
  15. 15.
    C. F. Baxter and E. Roberts, Proc. Soc. Exp. Biol. Med. 101, 811–815 (1959).PubMedGoogle Scholar
  16. 16.
    C. E. Zomzely, S. Roberts, and D. Rapaport, J. Neurochem. 11, 567–582 (1964).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Satake, Y. Takahashi, K. Mase, and K. Ogata, J. Biochem. (Tokyo) 56, 504–511 (1964).Google Scholar
  18. 18.
    M. R. V. Murthy and D. A. Rappoport, Biochim. Biophys. Acta 95, 132–145 (1965).PubMedGoogle Scholar
  19. 19.
    A. T. Campagnoni and H. R. Mahler, Biochemistry 6, 956–967 (1967).PubMedCrossRefGoogle Scholar
  20. 20.
    D. H. Clouet, M. Ratner, and N. Williams, Biochim. Biophys. Acta 123, 142–151 (1966).PubMedGoogle Scholar
  21. 21.
    Y. Takahashi, K. Mase, and S. Abe, J. Biochem. (Tokyo) 60, 363–371 (1965).Google Scholar
  22. 22.
    D. H. Adams and L. Lim, Biochem. J. 99, 261–265 (1966).PubMedGoogle Scholar
  23. 23.
    J. H. Mathaei and M. W. Nirenberg, Proc. Natl. Acad. Sci. U.S. 47, 1580–1588 (1961).CrossRefGoogle Scholar
  24. 24.
    K. H. Stenzel, R. F. Aronson, and A. L. Rubin, Biochemistry 5, 930–936 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Orrego and F. Lipmann, J. Biol. Chem. 242, 665–671 (1967).PubMedGoogle Scholar
  26. 26.
    R. S. Piha, M. Cuenod, and H. Waelsch, J. Biol. Chem. 241, 2397–2404 (1966).PubMedGoogle Scholar
  27. 27.
    S. Yamagami, R. Friz, and D. A. Rappoport, Biochim. Biophys. Acta 129, 532547 (1966).Google Scholar
  28. 28.
    M. R. V. Murthy, Biochim. Biophys. Acta 119, 586–598 (1966).PubMedGoogle Scholar
  29. 29.
    D. C. N. Earl and A. Korner, Biochem. J. 94, 721–734 (1965).PubMedGoogle Scholar
  30. 30.
    H. R. V. Arnstein, R. A. Cox, and J. A. Hunt, Biochem. J. 92, 648–661 (1964).PubMedGoogle Scholar
  31. 31.
    M. Zachmann, P. Tocci, and W. L. Nyhan, J. Biol. Chem. 241, 1355–1358 (1966).PubMedGoogle Scholar
  32. 32.
    P. Rouget and F. Chapeville, European J. Biochem. 4, 310–314, (1968).CrossRefGoogle Scholar
  33. 33.
    K. A. C. Elliott and N. M. Van Gelder, J. Physiol. (London) 153, 423–432 (1960).Google Scholar
  34. 34.
    K. Sano and E. Roberts, Biochem. Pharmacol. 12, 489–502 (1963).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Varon, H. Weinstein, C. F. Baxter, and E. Roberts, Biochem. Pharmacol. 14, 1755–1764 (1965).PubMedCrossRefGoogle Scholar
  36. 36.
    P. N. Abadom and P. G. Scholefield, Can. J. Biochem. Physiol. 40, 1575–1590 (1962).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Roberts and B. S. Morelos, J. Neurochem. 12, 373–387 (1965).PubMedCrossRefGoogle Scholar
  38. 38.
    D. R. Curtis and J. C. Watkins, J. Neurochem. 6, 117–141 (1960).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Takeuchi and N. Takeuchi, J. Physiol. 183, 418–432 (1966).PubMedGoogle Scholar
  40. 40.
    M. Otsuka, E. A. Kravitz, and D. D. Potter, J. Neurophysiol. 30, 725–752 (1967).PubMedGoogle Scholar
  41. 41.
    R. Werman, R. A. Davidoff, and M. H. Aprison, Nature 214, 681–683 (1967).PubMedCrossRefGoogle Scholar
  42. 42.
    I. G. Morgan and L. Austin, J. Neurochem. 15, 41–51 (1968).PubMedCrossRefGoogle Scholar
  43. 43.
    K. Von Hungen, H. R. Mahler, and W. J. Moore, J. Biot. Chem. 243, 1415–1423 (1968).Google Scholar
  44. 44.
    M. W. Gordon and G. G. Deanin, J. Biol. Chem. 243, 4222–4226 (1968).PubMedGoogle Scholar
  45. 45.
    R. Elul, Nature 210, 1127–1131 (1966).PubMedCrossRefGoogle Scholar
  46. 46.
    I. B. Gartside, Nature 220, 383–384 (1968).PubMedCrossRefGoogle Scholar
  47. 47.
    E. D. P. De Robertis, W. W. Nowinski, and F. A. Saez, in: “Cell Biology,” 4th Ed., p. 137, W. B. Saunders Co., Philadelphia (1965).Google Scholar
  48. 48.
    R. Blasberg and A. Lajtha, Arch. Biochem. Biophys. 112, 361–377 (1965).CrossRefGoogle Scholar
  49. 49.
    G. Levi, R. Blasberg, and A. Lajtha, Arch. Biochem. Biophys. 114, 339–351 (1966).CrossRefGoogle Scholar
  50. 50.
    K. D. Neame, J. Neurochem. 11, 67–76 (1964).PubMedCrossRefGoogle Scholar
  51. 51.
    B. S. Baliga, A. W. Pronczuk, and H. N. Munro, J. Mol. Biol. 34, 199–218 (1968).PubMedCrossRefGoogle Scholar
  52. 52.
    D. P. Nierlich, Proc. Natl. Acad. Sci. U.S. 60, 1345–1352 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Claude F. Baxter
    • 1
    • 2
    • 3
  • Sujata Tewari
    • 1
  1. 1.Neurochemistry LaboratoriesVeterans Administration HospitalSepulvedaUSA
  2. 2.Division of NeurosciencesCity of Hope Medical CenterDuarteUSA
  3. 3.Department of PhysiologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations