Advertisement

Developmental Changes in Peptide-Bond Hydrolases

  • Neville Marks
  • Abel Lajtha

Abstract

The rapid growth of brain during ontogeny affords a valuable experimental tool for studying the factors affecting protein breakdown and turnover. Despite the wealth of information documenting the remarkable changes during developmental(1–5) the correlation between chemical events and functional changes is poorly understood. Incorporation experiments with labeled amino acid precursors have established that brain proteins are in a state of dynamic equilibrium. The aspects concerned with the synthetic mechanisms are covered by Murthy(6) and by Roberts et al.(7) The purpose of this report is to comment on the areas concerned with protein breakdown, which is a necessary sequel to synthesis to maintain turnover. Other studies concerned with development are an earlier report from this laboratory,(3) the report of Oja,(8) and the contribution of Palladin and Belik.(9)

Keywords

Developmental Change Brain Extract Acid Proteinase Neutral Proteinase Protein Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Waelsch,Biochemistry of the Developing Nervous System (H. Waelsch, ed.), Academic Press, New York (1955).Google Scholar
  2. 2.
    W. A. Himwich and H. E. Himwich, The Developing Brain. Progress in Brain Research, Vol. 9 ( W. A. Himwich and H. E. Himwich, eds.), Elsevier, Amsterdam (1964).Google Scholar
  3. 3.
    N. Marks and A. Lajtha, in:Variations in Chemical Composition of the Nervous System as Determined by Developmental and Genetic Factors ( G. B. Ansell, ed.), p. 74, Pergamon Press, Oxford (1966).Google Scholar
  4. 4.
    W. A. Himwich,Developing Brain Newsletter,Nos. 1–33, Galesburg State Research Hospital, Galesburg, Illinois (1964–1969).Google Scholar
  5. 5.
    H. Mcllwain, “Biochemistry of the Central Nervous System,” Little Brown, Boston (1966) .Google Scholar
  6. 6.
    M. Murthy, the present volume, Chapter 5.Google Scholar
  7. 7.
    S. Roberts, C. Zomzely, and S. C. Bondy, the present volume, Chapter 1.Google Scholar
  8. 8.
    S. S. Oja, Ann. Acad. Sci. Fenn. 131, 7–78 (1967).Google Scholar
  9. 9.
    A. V. Palladin and Ya. V. Belik, the present volume, Chapter 3.Google Scholar
  10. 10.
    A. Lajtha, Int. Rev. Neurobiol. 6, 1-98 (1964).Google Scholar
  11. 11.
    J. Mandelstam, Nature 179, 1179–1181 (1957).Google Scholar
  12. 12.
    H. O. Halvorson and S. Spiegelman, J. Bacteriol. 64, 207–221 (1952).PubMedGoogle Scholar
  13. 13.
    M. J. Pine, J. Bacteriol. 92746–850 (1966).Google Scholar
  14. 14.
    D. Rittenberg, E. E. Spoul, and D. Shemin, Fed. Proc. 7, 180 (1948).PubMedGoogle Scholar
  15. 15.
    A. A. Neifakh and E. R. Davidov, Biochemistry 29, 235–242 (1964).Google Scholar
  16. 16.
    G. Lundblad and J. Rumnstrom, Exp. Cell. Res. 27,328–331 (1962) .Google Scholar
  17. 17.
    E. Urbani, in:Regeneration and Related Problems( V. Kiortsis and H. A. L. Thampusch, eds.) pp. 39–55, North-Holland, Amsterdam (1964).Google Scholar
  18. 18.
    C. W. M. Adams and G. G. Glenner, J. Neurochem. 9, 233–239 (1962).PubMedCrossRefGoogle Scholar
  19. 19.
    L. M. Screebny, Ann. N.Y. Acad. Sci. 85, 182–188 (1960).Google Scholar
  20. 20.
    M. C. Diamond, Brain Res. 7, 407–418 (1968).CrossRefGoogle Scholar
  21. 21.
    L. F. Chapman and H. G. Wolff, A.M.A. Arch. Int. Med. 103, 86 (1959).CrossRefGoogle Scholar
  22. 22.
    Symposium “Relationship of Nutrition to Central Nervous System Development and Function,” Fed. Proc. 26(1967).Google Scholar
  23. 23.
    G. Ungar, E. Ascheim, S. Psychoyos, and D. V. Romano, J. Gen. Physiol. 40, 635 (1957); 46, 267–275 (1962).Google Scholar
  24. 24.
    S. S. Oja, Ann. Acad. Sci. Fenn. 125, 7–59 (1966).Google Scholar
  25. 25.
    S. Roberts, in: “Brain Barrier Systems” ( A. Lajtha and D. Ford, eds.), pp. 235–242, Elsevier, Amsterdam (1968).Google Scholar
  26. 26.
    S. Roberts, J. Neurochem. 10,931–940 (1963) .Google Scholar
  27. 27.
    J. Dobbing, in:Brain Barrier Systems ( A. Lajtha and D. Ford, eds.), pp. 417–427, Elsevier, Amsterdam (1968).Google Scholar
  28. 28.
    A. Lajtha, in: Regional Neurochemistry( S. S. Kety and J. Elkes, eds.), pp. 25–36, Pergamon Press, Oxford (1961).Google Scholar
  29. 29.
    A. Lajtha and N. Marks, Dis. Nerv. Sys. 30 (Suppl.), 36–43 (1969).Google Scholar
  30. 30.
    A. Vernadakis and D. M. Woodbury, Arch. Neurol. 12, 284–293 (1965).PubMedCrossRefGoogle Scholar
  31. 31.
    D. M. F. Greenberg, F. Friedberg, M. P. Schulman, and T. Winnick, Cold Spr. Harb. Symp. Quant. Biol. 13, 113–117 (1948).Google Scholar
  32. 32.
    S. Gelber, P. L. Campbell, G. E. Deibler, and L. Sokoloff, J. Neurochem. 11, 221–229 (1964).PubMedCrossRefGoogle Scholar
  33. 33.
    T. C. Johnson and M. W. Luttges, J. Neurochem. 13, 545–552 (1966).PubMedCrossRefGoogle Scholar
  34. 34.
    C. B. Klee and L. Sokoloff, J. Neurochem. 11, 709–716 (1964).PubMedCrossRefGoogle Scholar
  35. 35.
    N. Marks, Int. Rev. Neurobiol. 11, 57–90 (1968).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Bergmann, Adv. Enzymol. 2,49–68 (1942) ; Enzyme Nomenclature, 1964 Recommendations of the International Union of Biochemistry (LU.B.), Elsevier, Amsterdam (1965) .Google Scholar
  37. 37.
    E. K. Patterson, S. H. Hsiao, A. Keppel, and S. Sorot, J. Biol. Chem. 238, 36113620 (1963).Google Scholar
  38. 38.
    E. K. Patterson, S. H. Hsiao, A. Keppel, and S. Sorot, J. Biol. Chem. 240, 710–715 (1965).PubMedGoogle Scholar
  39. 39.
    E. M. Press, R. R. Porter, and J. Cebra, Biochem. J. 74, 501–513 (1960).PubMedGoogle Scholar
  40. 40.
    N. Marks and A. Lajtha, Biochem. J. 89, 438–447 (1965).Google Scholar
  41. 41.
    H. Neurath, K. A. Walsh, and W. P. Winter, Science 158, 1638–1644, (1967).PubMedCrossRefGoogle Scholar
  42. 42.
    E. L. Smith, in:The Enzymes (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Vol. 4, Pt. A, pp. 1–10, Academic Press, New York (1960).Google Scholar
  43. 43.
    S. R. Himmelhock and E. A. Peterson, Biochemistry 7, 2085–2092 (1968).CrossRefGoogle Scholar
  44. 44.
    A. S. Brecher, J. Neurochem. 10, 1-6 (1963).Google Scholar
  45. 45.
    N. Marks, R. K. Datta, and A. Lajtha, J. Biol. Chem. 243, 2882–2889, (1968).PubMedGoogle Scholar
  46. 46.
    F. Binkley, F. Leibach, and F. King, Biochem. Biophys. Acta. 128, 397–405 (1968).Google Scholar
  47. 47.
    A. S. Brecher and R. E. Sobel, Biochem. J. 105, 641–646 (1967).PubMedGoogle Scholar
  48. 48.
    L. B. Flexner, J. B. Flexner, and R. B. Roberts, Science 157, 1377–1383 (1967).CrossRefGoogle Scholar
  49. 49.
    J. K. McDonald, J. J. Reilly, B. B. Zeitman, and S. Ellis, J. Biol. Chem. 243, 2038–2037 (1968).Google Scholar
  50. 50.
    D. Nathans and A. Neidle, Nature 197, 1076 (1963).PubMedCrossRefGoogle Scholar
  51. 51.
    N. Marks in:Handbook of Neurochemistry(A. Lajtha, ed.), Vol. 4, Plenum Press, New York (1969) .Google Scholar
  52. 52.
    A. Pope, J. Neurochem. 4, 31–41 (1957).CrossRefGoogle Scholar
  53. 53.
    R. L. Friede,Topographic Brain Chemistry, Academic Press, New York (1966).Google Scholar
  54. 54.
    L. L. Uzman, M. K. Rumley, and S. Van Den Noort, J. Neurochem. 6, 299–310 (1962).CrossRefGoogle Scholar
  55. 55.
    L. L. Uzman, S. Van Den Noort, and M. K. Rumley, J. Neurochem. 9, 241–252 (1962).PubMedCrossRefGoogle Scholar
  56. 56.
    M. H. Aprison, R. A. Davidoff, and R. Werman, in:Handbook of Neurochemistry,Vol. 3 ( A. Lajtha, ed.), Plenum Press, New York (1969).Google Scholar
  57. 57.
    N. Marks, R. K. Datta, and A. Lajtha, J. Neurochem. (in press).Google Scholar
  58. 58.
    D. Abraham, J. J. Pisano, and S. Udenfriend, Arch. Biochem. Biophys. 104, 160–165 (1964).PubMedCrossRefGoogle Scholar
  59. 59.
    S Kakiuchi and H. H. Tomizawa, J. Biol. Chem. 239 2160–2164 (19M).Google Scholar
  60. 60.
    N. Marks and A. Lajtha, Fed. Proc. 25, 793 (1966).Google Scholar
  61. 61.
    A. Lajtha and N. Marks, in: “Protoides of the Biological Fluids” (H. Peeter, ed.), Vol. 14, pp. 103–114, Elsevier, Amsterdam (1966).Google Scholar
  62. 62.
    H. J. Strecker, P. Mela, and H. Waelsch, J. Biol. Chem. 212, 223–233 (1955).PubMedGoogle Scholar
  63. 63.
    S. M. Birnbaum, L. Levinlow, R. B. Kinsley, and J. P. Greenstein, J. Biol. Chem. 194 455–470 (1952) .Google Scholar
  64. 64.
    E. J. Olsen, H. W. Littleton, and J. V. Auditore, Arch. Biochem. Biophys. 119, 22–28 (1967).CrossRefGoogle Scholar
  65. 65.
    K. L. Reichett and E. Kuamme, J. Neurochem. 14, 987–996 (1967).CrossRefGoogle Scholar
  66. 66.
    H. Hanson, in: “Hoppe-Seyler Thierfelder Handbuch der Physiologisch Analyse,” 6C, p. 1, Springer-Verlag, Berlin (1966).Google Scholar
  67. 67.
    F. B. Goldstein, J. Biol. Chem. 244 (in press).Google Scholar
  68. 68.
    H. Neurath, in: “The Enzymes” (P. D. Boyer, H. Lardy, K. Myrback, eds.), Vol. 4, pp. 11–36, Academic Press, New York (1960).Google Scholar
  69. 69.
    J. R. Brown, R. N. Greenshilds, M. Yamasaki, and H. Neurath, Biochemistry 2 867–876 (1963) .Google Scholar
  70. 70.
    B. L. Valle, Fed. Proc. 23 8–17 (19M).Google Scholar
  71. 71.
    J. E. Coleman and B. L. Valle, Biochemistry 3, 1874–1879 (1964).PubMedCrossRefGoogle Scholar
  72. 72.
    W. A. Krivoy and D. Kroeger, Brit. J. Pharmacol. 22, 329–341 (1964).PubMedGoogle Scholar
  73. 73.
    E. G. Erdos and H. Y. T. Yang, in: “Hypotensive Peptides” ( E. G. Erdos, N. Back, and F. Sicuri, eds.), p. 235, Springer-Verlag, New York (1966).CrossRefGoogle Scholar
  74. 74.
    A. S. Brecher and J. B. Suszkiw, Biochem. J. 112, 335–342 (1969).PubMedGoogle Scholar
  75. 75.
    G. G. Glenner, P. J. McMillan, and J. E. Folk, Nature 192, 338–340 (1962); 194, 867 (1962).Google Scholar
  76. 76.
    H. Waelsch and H. Weil-Malherbe, “Psychiatric der Gegenwart,” Vol. IB, pp. 2–75, Springer-Verlag, Berlin (1964).Google Scholar
  77. 77.
    P. A. Khairallah and I. H. Page, Biochem. Med. 1, 1–8 (1967).CrossRefGoogle Scholar
  78. 78.
    S. Berl, Biochemistry 5, 916–922 (1966).PubMedCrossRefGoogle Scholar
  79. 79.
    J. H. Pincus and H. Waelsch, Arch. Biochem. Biophys. 126, 34–52 (1968).PubMedCrossRefGoogle Scholar
  80. 80.
    P. J. Fodor, A. Miller, A. Neidle, and H. Waelsch, J. Biol. Chem. 203, 991–1002 (1953).PubMedGoogle Scholar
  81. 81.
    Y. Kakimoto, T. Nakajima, A. Kanazawa, M. Takesada, and I. Sano, Biochim. Biophys. Acta 93, 333–338 (1964).PubMedCrossRefGoogle Scholar
  82. 82.
    V. K. Hopsu, K. K. Mäkinen, and G. G. Glenner, Arch. Biochem. Biophys. 114, 557–566 (1966).PubMedCrossRefGoogle Scholar
  83. 83.
    S. Ellis, Biochim. Biophys. Res. Commun. 12, 452–456 (1963).CrossRefGoogle Scholar
  84. 84.
    S. Ellis and M. Perry, J. Biol. Chem. 241, 3679–3686 (1966).PubMedGoogle Scholar
  85. 85.
    J. K. McDonald, F. H. Leibach, R. E. Grindeland, and S. Ellis, J. Biol. Chem. 243, 4143–4150 (1968).PubMedGoogle Scholar
  86. 86.
    J. K. McDonald, S. Ellis, and T. J. Reilly, J. Biol. Chem. 241, 1494–1501 (1966).PubMedGoogle Scholar
  87. 87.
    S. Ellis and J. M. Nuenke, J. Biol. Chem. 242, 4623–4629 (1968).Google Scholar
  88. 88.
    J. K. McDonald, F. H. Leibach, R. E. Grindeland, and S. Ellis, J. Biol. Chem. 243, 4143–5150 (1968).PubMedGoogle Scholar
  89. 89.
    V. K. Hopsu-Havu and P. Rintola, Histochem. J. 1, 1–17 (1968).CrossRefGoogle Scholar
  90. 90.
    N. Marks and A. Lajtha in Methods in Enzymology (L. Lorand and G. E. Perl-mann, eds.), Academic Press, New York (in press).Google Scholar
  91. 91.
    J. M. W. Bouma and M. Gruber, Biochim. Biophys. Acta. 89, 545–547 (1964).PubMedGoogle Scholar
  92. 92.
    J. S. Fruton, in: The Enzymes, (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), 2nd Ed., Vol. 4, p. 233, Academic Press, New York (1960).Google Scholar
  93. 93.
    A. S. Brecher and S. W. Barefoot, Arch. Int. Physiol. Bioch. 75, 816 (1967).CrossRefGoogle Scholar
  94. 94.
    N. Marks, R. K. Datta, and A. Lajtha, in: “Macromolecules and the Function of the Neuron” ( Z. Lodin, ed.), pp. 220–231, Excerpta Medica, Amsterdam (1968).Google Scholar
  95. 95.
    R. E. Smith and M. G. Farquhar, J. Cell Biol. 31, 319–347 (1966).PubMedCrossRefGoogle Scholar
  96. 96.
    N. Marks, J. Biol. Chem. (submitted for publication).Google Scholar
  97. 97.
    R. M. Metrione, A. G. Neves, and J. S. Fruton, Biochemistry 5, 1597–1604 (1966).CrossRefGoogle Scholar
  98. 98.
    R. J. Planta and M. Gruber, Biochim. Biophys. Acta. 53, 443 444 (1961); 89, 503–510 (1964).Google Scholar
  99. 99.
    S. C. Dhar and S. M. Bose, Leather Sci. 11, 309–320 (1965).Google Scholar
  100. 100.
    H. Wurz, A. Tanaka, and J. S. Fruton, Biochemistry 1, 19–29 (1962).PubMedCrossRefGoogle Scholar
  101. 101.
    B. D’Monte, N. Marks, R. K. Datta, and A. Lajtha, the present volume, Chapter 8.Google Scholar
  102. 102.
    C. Lapresle and T. Webb, Biochem. J. 84 455–462 (1962.)Google Scholar
  103. 103.
    M. L. Anson, J. Gen. Physiol. 22 79 (1938) .Google Scholar
  104. 104.
    N. Marks, and A. Lajtha, Biochem. J. 89, 438–447 (1963).PubMedGoogle Scholar
  105. 105.
    A. V. Palladin, M. M. Polyakova, and V. K. Lishko, J. Neurochem. 10, 187–194 (1963).CrossRefGoogle Scholar
  106. V. K. Lishko, Ukr. Biokhim. Zh. 35 874–880 (1963); 36 565–573 (1964); 37 163–168 (1965) (see Chem. Abstr. 57, 5008g; 60 12292a; 61 14962).Google Scholar
  107. 107.
    N. M. Polyakova, Sb. Dokl. Erevan., pp. 25–38 (1963) (see Chem. Abstr. 55, 12588h; 60, 1 2289 ).Google Scholar
  108. 108.
    T. Y. Liu, W. H. Stein, S. Moore, and S. D. Elliott, J. Biol. Chem. 240, 1143–1149 (1965).PubMedGoogle Scholar
  109. 109.
    R. Van Heyningen and S. G. Whaley, Biochem. J. 86 92–101 (1963).Google Scholar
  110. 110.
    B. Ansell and D. Richter, Biochim. Biophys. Acta 13 87–91, 92–97 (1954).Google Scholar
  111. 111.
    D. Richter, Brit. Med. Bull. 17, 118–121 (1961).PubMedGoogle Scholar
  112. 112.
    S. G. Whaley and R. Van Heyningen, Biochem. J. 83, 274–283 (1962).Google Scholar
  113. 113.
    U J. Lewis, J. Biol. Chem. 237, 3141–3145 (1962); 238, 3330–3335 (1963).Google Scholar
  114. 114.
    L. A. Tsaryuk, Ukr. Biokhim. Zh. 34, 815–23 (1962); 36, 334–342 (1964) (Chem. Abstr. 61, 8697 ).Google Scholar
  115. 115.
    R. Umana, Anal. Biochem. 26 430–438 (1968) .Google Scholar
  116. 116.
    J. Marrink and M. Gruber, Biochim. Biophys. Acta 118, 438 (1966).PubMedGoogle Scholar
  117. 117.
    P. J. Riekkinen and U. K. Rinne, Brain Res. 9, 126–135 (1968).PubMedCrossRefGoogle Scholar
  118. 118.
    G. Guroff, J. Biol. Chem. 239, 149–155 (1964).PubMedGoogle Scholar
  119. 119.
    J. Feder, Biochemistry 6 2088–2093 (1967) .Google Scholar
  120. 120.
    S. Mahadevan and A. L. Tappel, J. Biol. Chem. 242, 2369–2374 (1967).PubMedGoogle Scholar
  121. 121.
    N. W. Penn, Biochim. Biophys. Acta 37, 55–63 (1960).CrossRefGoogle Scholar
  122. 122.
    L. Libensen and M. Jena, Arch. Biochim. Biophys. 1964, 292–296.Google Scholar
  123. 123.
    V. K. Hopsu-Havu, P. Rintola, and G. G. Glenner, Acta. Chem. Scand. 22, 299–308 (1968).PubMedCrossRefGoogle Scholar
  124. 124.
    E. R. Einstein, J. Csejtey, and N. Marks, FEB Letters 1, 191–195 (1968).CrossRefGoogle Scholar
  125. 125.
    H. Iwata, T. Shikimi, and T. Oka, Biochem. Pharmacol. 18, 119–128 (1969).PubMedCrossRefGoogle Scholar
  126. 126.
    C. S. Beck, C. W. Hasinoff, and M. E. Smith, J. Neurochem. 15, 1297–1301 (1968).PubMedCrossRefGoogle Scholar
  127. 127.
    D. M. Blow, J. J. Birktoft, and B. S. Hartley, Nature 221, 337–340 (1969).PubMedCrossRefGoogle Scholar
  128. 128.
    C. S. Wright, R. A. Alden, and J. Kraut, Nature 221, 235–242 (1969).PubMedCrossRefGoogle Scholar
  129. 129.
    T. A. Steitz, M. L. Ludwig, F. A. Quiocho, and W. N. Lipscomb, J. Biol. Chers. 242, 4662–4668 (1967).Google Scholar
  130. 130.
    T. Y. Liu, J. Biol. Chem. 242, 4029–4032 (1967).Google Scholar
  131. 131.
    F. E. Samson, R. J. Jacobs, Amer. J. Physiol. 199, 693–696 (1960).PubMedGoogle Scholar
  132. 132.
    N. Marks, and B. D’Monte, Fed. Proc. 28, 733 (1969).Google Scholar
  133. 133.
    D. F. DeAlmeida and A. G. E. Pearse, J. Neurochem. 3, 132–138 (1958).CrossRefGoogle Scholar
  134. 134.
    R. E. McCaman and M. H. Aprison, in: “The Developing Brain,” “Progress in Brain Research,” Vol. 9 ( W. A. Himwich and H. E. Himwich, eds.), pp. 220–231 Elsevier, Amsterdam (1964).Google Scholar
  135. 135.
    R. Vogel, I. Trautschold, and E. Werle, “Natürliche Proteinasen Inhibitoren,” Monograph, Biochemie und Klinik, George Thieme, Stuttgart (1966) . [Translation: Academic Press (1968)1Google Scholar
  136. 136.
    A. S. Brecher and N. M. Quinn, Biochem. J. 102, 120–121 (1967).PubMedGoogle Scholar
  137. 137.
    U. J. Lewis, J. N. Fisher, and W. P. Vanderlaan, Acta Chem. Scand. 17, (Suppl. 1), 165–169 (1963).CrossRefGoogle Scholar
  138. 138.
    L. Thieblot, P. Bastide, S. Blaise, J. Boyer, and G. Dastugue, Ann. Endocrinol. 26, 313–314 (1965).Google Scholar
  139. 139.
    H. P. Von Hahn, Experientia 18, 509–511 (1962).CrossRefGoogle Scholar
  140. 140.
    R. K. Shaw and J. D. Heine, J. Neurochem. 12, 151–155 (1965).PubMedCrossRefGoogle Scholar
  141. 141.
    S. Berl, in: “Progress in Brain Research,” Vol. 9 ( W. A. Himwich and H. E. Himwich, eds.), pp. 178–182, Elsevier, Amsterdam (1964).Google Scholar
  142. 142.
    H. C. Agrawal, J. M. Davis, and W. A. Himwich, J. Neurochem. 13, 607–615 (1968).CrossRefGoogle Scholar
  143. 143.
    S. M. Bayer and W. C. McMurray, J. Neurochem. 14, 695–706 (1967).PubMedCrossRefGoogle Scholar
  144. 144.
    H. C. Agrawal, J. M. Davis, and W. A. Himwich, J. Neurochem. 15, 917–923 (1968).PubMedCrossRefGoogle Scholar
  145. 145.
    V. K. Hopsu-Havu, K. K. Mäkinen, and G. G. Glenner, Nature 212, 1271 (1966).PubMedCrossRefGoogle Scholar
  146. 146.
    P. Cohn and D. Richter, J. Neurochem. 1, 166–172 (1956).PubMedCrossRefGoogle Scholar
  147. 147.
    P. J. Riekkinen and U. K. Rinne, Brain Res. 9, 136–144 (1964).CrossRefGoogle Scholar
  148. 148.
    P. Jouan and J. C. Rocaboy, Compt. Rend. Soc. Biol. 160, 859–862 (1966).Google Scholar
  149. 149.
    T. P. J. Vanha-Pertrula and V. K. Hopsu, Ann. Med. Exp. Fenn. 43, 32–39 (1965).Google Scholar
  150. 150.
    L. F. Kress, R. J. Peansky, and H. M. Klitgaard, Biochim. Biophys. Acta 113, 375–389 (1966).PubMedGoogle Scholar
  151. 151.
    F. Sanger, E. O. P. Thomson, Biochem. J. 53, 353 (1953).PubMedGoogle Scholar
  152. 152.
    D. F. Matheson, J. Neurochem. 16, 215–223 (1969).PubMedCrossRefGoogle Scholar
  153. 153.
    M. K. Gaitonde and D. Richter, J. Neurochem. 13, 1309–1318 (1966).PubMedCrossRefGoogle Scholar
  154. 154.
    R. T. Shimke, R. Ganshow, D. Doyle, and I. M. Arias, Fed. Proc. 27, 1223–1230 (1968).Google Scholar
  155. 155.
    J. K. MaDonald, B. J. Zeitman, T. J. Reilly, and S. Ellis, J. Biol. Chem. 244, 2693–2709 (1969).Google Scholar
  156. 156.
    W. A. Himwich and H. C. Agrawal, in: “Handbook of Neurochemistry.” (A. Lajtha, ed.), Vol. 1, pp. 33–52, Plenum Press, New York (1969).Google Scholar
  157. 157.
    A. T Matheson and B. L. Tattrie, Can. J. Biochem. 42 95–103 (1964).Google Scholar
  158. 158.
    T. F. Lipmann, Science 164, 1024–1030 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Neville Marks
    • 1
  • Abel Lajtha
    • 1
  1. 1.New York State Research Institute for Neurochemistry and Drug Addiction Ward’s IslandNew YorkUSA

Personalised recommendations