Advertisement

Glycoproteins in Neural Tissue

  • Eric G. Brunngraber

Abstract

The acceleration in biochemical research that has occurred during the past decade has extended our knowledge concerning proteins that contain carbohydrates as a part of their molecular structure. An excellent review on glycoproteins has been published,(1) and a more recent review that summarizes progress in our knowledge of neural glycoproteins has appeared.(2) Glycoproteins are present in high concentrations in extracellular fluids and appear to form an important structural component of the plasma membranes of a wide variety of cell types. Apparently, these substances are synthesized within the cell in order to perform an extracellular function.(3) In some cases the secreted glycoprotein functions at locations that are remote from the site of synthesis. In other cases the secreted glycoprotein appears to function on the cell surface or in the intercellular space immediately adjacent to the parent cell, thereby playing a role in the relationship between the cell and its immediate environment. Proteolytic digestion of many purified glycoproteins releases glycopeptides the carbohydrate moieties of which generally consist of fucose, N-acetylneuraminic acid (NANA), galactose, mannose, glucosamine, and galactosamine. The purified glycopeptides are usually 60–80% carbohydrate, and in many cases may possess a relatively large molecular size. The glycopeptides from brain, for example, have molecular sizes that correspond to a molecular weight ranging from 9900 to 13,500 as judged by gel-filtration experiments using proteins and polypeptides as standards. To emphasize the predominately carbohydrate nature of these glycopeptides, they have been called “sialomucopolysaccharides”.(2) It has been noted (4) that terminology has caused some confusion, and in order to distinguish these substances from the uronic acid-containing mucopolysaccharides (“glycosaminoglycuronoglycans”), we have adopted the more descriptive term sialofucohexosaminoglycans to identify these glycopeptides.

Keywords

Neural Tissue Cetylpyridinium Chloride Large Molecular Size Calcium Hydroxylapatite Beef Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gottschalk (ed.), “Glycoproteins, Their Composition, Structure, and Function,” Elsevier Publishing Co., Amsterdam (1966).Google Scholar
  2. 2.
    E. G. Brunngraber, in, “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 1, Plenum Press, New York 1969.Google Scholar
  3. 3.
    E. D. Eylar, J. Theoret. Biol. 10, 89–113 (1965).CrossRefGoogle Scholar
  4. 4.
    R. U. Margolis, J. Histochem. Cytochem. 16, 486 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    R. G. Spiro, J. Biol. Chem. 242, 1915–22, 1923–32 (1967).Google Scholar
  6. 6.
    R. G. Spiro, J. Biol. Chem. 240, 1603–10 (1965).Google Scholar
  7. 7.
    B. Radhakrishnamurthy and G. S. Berenson, J. Biol. Chem. 241, 2106–12 (1966).PubMedGoogle Scholar
  8. 8.
    E. G. Brunngraber and B. D. Brown, Biochim. Biophys. Acta 69, 581–2 (1963).PubMedCrossRefGoogle Scholar
  9. 9.
    E. G. Brunngraber and B. D. Brown, J. Neurochem. 11, 449–459 (1964).PubMedCrossRefGoogle Scholar
  10. 10.
    E. G. Brunngraber and B. D. Brown, Biochim. Biophys. Acta 83, 357–60 (1964).PubMedGoogle Scholar
  11. 11.
    E. G. Brunngraber and B. D. Brown, Biochem. J. 103, 65–72 (1967).PubMedGoogle Scholar
  12. 12.
    E. G. Brunngraber, B. D. Brown, and V. Aguilar, J. Neurochem., 16, 1059 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    C. Di Benedetta, E. G. Brunngraber, G. Whitney, B. D. Brown, and A. Aro, Arch. Biochem. Biophys., 131, 404 (1969).PubMedCrossRefGoogle Scholar
  14. 14.
    E. G. Brunngraber and G. Whitney, J. Chromatog. 32, 749–50 (1968).CrossRefGoogle Scholar
  15. 15.
    E. G. Brunngraber, H. Dekirmenjian, and B. D. Brown, Biochem. J. 103, 73–78 (1967).PubMedGoogle Scholar
  16. 16.
    V. P. Whittaker, Biochem. J. 72, 694–706 (1959).PubMedGoogle Scholar
  17. 17.
    H. Dekirmenjian and E. G. Brunngraber, Biochim. Biophys. Acta 177, 1–10 (1969).PubMedCrossRefGoogle Scholar
  18. 18.
    L. N. Johnston and L. M. H. Larramendi, Exp. Brain Res. 5, 326–340 (1968).CrossRefGoogle Scholar
  19. 19.
    H. Dekirmenjian, E. G. Brunngraber, L. N. Johnston, and L. M. H. Larramendi, Exp. Brain Res., 8, 97 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    E. De Robertis, A. Pellegrino De Iraldi, G. Rodriquez de Lores Anaiz, and L. Salganicoff, J. Neurochem. 9, 23–35 (1962).CrossRefGoogle Scholar
  21. 21.
    V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirkland, Biochem. J. 90, 293–303 (1964).PubMedGoogle Scholar
  22. 22.
    E. G. Brunngraber, V. A. Ziboh, and W. G. Occomy, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, 207–10, Elsevier Publishing Co., Amsterdam (1966).Google Scholar
  23. 23.
    L. G. Abood, K. Kurahasi, E. G. Brunngraber, and K. Koketsu, Biochim. Biophys. Acta 112, 330–39 (1966).PubMedCrossRefGoogle Scholar
  24. 24.
    N. T. Papadopoulos, Analyt. Biochem. 1, 486 (1960).PubMedCrossRefGoogle Scholar
  25. 25.
    J. N. Cumings, H. Goodwin, and G. Curzon, J. Neurochem. 4, 234–237 (1959).PubMedCrossRefGoogle Scholar
  26. 26.
    S. H. Barondes, J. Neurochem. 15, 699–706 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    K. von Hungen, H. R. Mahler, and W. J. Moore, J. Biol. Chem. 243, 1415–23 (1968).Google Scholar
  28. 28.
    D. B. Tower, J. Comp. Neurol. 101, 19–52 (1954).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Hess, J. Comp. Neurol. 98, 69–91 (1953).PubMedCrossRefGoogle Scholar
  30. 30.
    I. J. Young and L. G. Abood, J. Neurochem. 6, 89–94 (1960).CrossRefGoogle Scholar
  31. 31.
    N. M. Sulkin, J. Neurochem. 5, 231–235 (1960).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Chouinard, Compt. Rend. 250, 3061 (1960).Google Scholar
  33. 33.
    B. Droz, J. Microsc. 6, 419 (1967).Google Scholar
  34. 34.
    M. Peterson and C. P. Leblond, J. Cell Biol. 21, 143–148 (1964).PubMedCrossRefGoogle Scholar
  35. 35.
    W. M. Schanklin and N. A. Azzam, J. Comp. Neurol. 123, 5–9 (1964).CrossRefGoogle Scholar
  36. 36.
    M. Wolman, J. Neurochem. 1, 370–376 (1956–7).Google Scholar
  37. 37.
    A. Hess, J. Anat. (London) 92, 298–303 (1958).Google Scholar
  38. 38.
    A. Rambourg and C. P. Leblond, J. Cell Biol. 32, 27–53 (1967).PubMedCrossRefGoogle Scholar
  39. 39.
    D. C. Pease, J. Ultrastruct. Res. 15, 555–588 (1966).PubMedCrossRefGoogle Scholar
  40. 40.
    W. Bondareff, Anat. Rec. 157, 527–535 (1967).CrossRefGoogle Scholar
  41. 41.
    A. L. Shabadash, “Tret’ya Vses. Konf. po Biokhim. Nervnoi Sistemy,” p. 283 Akad Nauk ArmSSR, Inst. Biokhim., Sb. Dokl., Erevan 1962 (Pub. 1963 ).Google Scholar
  42. 42.
    R. Singh, J. Histochem. Cytochem. 12, 712–13 (1964).Google Scholar
  43. 43.
    C. E. Lumsden, in: “Biology of Neuroglia” ( W. F. Windle, ed.), pp. 141–61, C. C. Thomas, Springfield, Illinois (1958).Google Scholar
  44. 44.
    R. Schnabel, Experimentia 17, 28 (1961).CrossRefGoogle Scholar
  45. 45.
    M. Obrucnik, Acta Histochem. 11, 289 (1961).PubMedGoogle Scholar
  46. 46.
    G. Benetato, E. Gabrielescu, L. Parteni, A. Bordeianu, and I. Boros, Fiziol. Normala Patol. (Bucharest) 7, 73 (1961).Google Scholar
  47. 47.
    P. Bailey and G. Schaltenbrand, Deut. Z. Nervenheilk. 97, 231 (1927).CrossRefGoogle Scholar
  48. 48.
    W. Penfield and W. Cone, Arch. Neurol. Psychiat. 20, 1065 (1928).Google Scholar
  49. 49.
    I. Tasaki and I. Singer, Ann. N.Y. Acad. Sci. 137, 792–805 (1966).PubMedCrossRefGoogle Scholar
  50. 50.
    P. M. Carroll and D. D. Sereda, Nature 217, 667–8 (1968).PubMedCrossRefGoogle Scholar
  51. 51.
    E. G. Brunngraber, V. Aguilar, and A. Aro, Arch. Biochem. Biophys., 129, 131 (1969).PubMedCrossRefGoogle Scholar
  52. 52.
    E. G. Brunngraber and E. A. Bejnarowicz, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, pp. 201–5, Elsevier Publishing Co., Amsterdam (1966).Google Scholar
  53. 53.
    E. G. Brunngraber and V. Aguilar, J Neurochem. 9, 451–61 (1962).PubMedCrossRefGoogle Scholar
  54. 54.
    A. H. Maddy, Biochim. Biophys. Acta 117, 193–200 (1966).PubMedCrossRefGoogle Scholar
  55. 55.
    C. Di Benedetta, and E. G. Brunngraber, submitted for publication.Google Scholar
  56. 56.
    B. W. Moore, Biochem. Biophys. Res. Commun. 19, 739 (1965).PubMedCrossRefGoogle Scholar
  57. 57.
    B. S. McEwen and H. Hydén, J. Neurochem. 13, 823–33 (1966).PubMedCrossRefGoogle Scholar
  58. 58.
    K. Warecka, Life Sci. 6, 1999 (1967).PubMedCrossRefGoogle Scholar
  59. 59.
    K. Warecka and D. Müller, J. Neurol. Sci., 8, 329–46 (1969).PubMedCrossRefGoogle Scholar
  60. 60.
    K. Warecka and H. Bauer, Deut. Z. Nervenheilk., 194, 66 (1968).CrossRefGoogle Scholar
  61. 61.
    K. Suzuki, J. Neurochem. 12, 969–79 (1965).CrossRefGoogle Scholar
  62. 62.
    O. Holian and E. G. Brunngraber, to be submitted for publication.Google Scholar
  63. 63.
    R. Joseph and B. K. Bachhawat, J. Neurochem. 11, 517–26 (1964).PubMedCrossRefGoogle Scholar
  64. 64.
    A. Hagopian and E. H. Eylar, Arch. Biochem. Biophys. 126, 785–94 (1968).PubMedCrossRefGoogle Scholar
  65. 65.
    T. Ohgushi and I. Yamashina, Biochim. Biophys. Acta 156, 417–19 (1968).PubMedCrossRefGoogle Scholar
  66. 66.
    P. W. Robbins, A. Wright, and M. Dankert, J. Gen. Physiol. 49 (Sup pl. Part 2 ), 331–45 (1966).Google Scholar
  67. 67.
    Z. Dische, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, pp. 1–20, Elsevier Publishing Co., Amsterdam (1966).Google Scholar
  68. 68.
    I. I. Glezer and I. S. Yakobson, Zh. Nervopatol. Psikhiat. 67, 576 (1967).Google Scholar
  69. 69.
    P. W. Taylor, Jr., K. C. Richardson, P. M. Roddy, and E. Titus, J. Pharm. Exp. Therap. 156, 483–491 (1967).Google Scholar
  70. 70.
    T. Humphreys, Devel. Biol. 8, 27–47 (1963).CrossRefGoogle Scholar
  71. 71.
    A. A. Moscona, Proc. Natl. Acad. Sci. U.S. 49, 742 (1963).CrossRefGoogle Scholar
  72. 72.
    E. Margoliash, J. R. Schenck, M. P. Hargie, S. Burokas, W. R. Richter, and G. H. Barlow, Biochem. Biophys. Res. Commun. 20, 383–88 (1965).CrossRefGoogle Scholar
  73. 73.
    P. M. Kramer, J. Cell. Physiol. 69, 199–207 (1967).CrossRefGoogle Scholar
  74. 74.
    S. Bogoch, “The Biochemistry of Memory,” Oxford University Press, New York (1968).Google Scholar
  75. 75.
    H. Mcllwain, “Biochemistry and the Central Nervous System,” Little, Brown and Co., Boston (1966).Google Scholar
  76. 76.
    N. T. Eldredge, G. Read, and W. Cutting, Med. Exp. 8, 265 (1963).PubMedGoogle Scholar
  77. 77.
    E. G. Brunngraber, Perspect. Biol. Med., 12, 467 (1969).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Eric G. Brunngraber
    • 1
  1. 1.Illinois State Psychiatric InstituteChicagoUSA

Personalised recommendations