Advertisement

The Role of Hormones in Cerebral Protein Metabolism

  • Stanley E. Geel
  • Paola S. Timiras

Abstract

Hormones can be regarded as chemical mediators which, under the control of the central nervous system (CNS), elicit responses in specific tissues necessary for the homeostasis of the organism as a whole. The last few years have witnessed an intensive search for the molecular mechanisms underlying the physiological action of hormones. Because of the complexity of the multicellular organism, the hormonal responses occurring at specific cellular sites are far removed, both spatially and temporally, from the site of hormone synthesis and release. Attempts to define the primary biochemical locus of hormonal action are therefore fraught with difficulties. Karlson(1) and Zalokar(2) formulated the concept that certain hormones involved in the functional differentiation of tissues are capable of modifying gene expression. This theory, which is inherent in the “operon” model of Jacob and Monod,(3) has had a propelling influence on recent investigations into the mode of action of hormones in regulating protein biosynthesis; such studies are providing valuable insights into the genetic regulatory mechanisms of protein synthesis.

Keywords

Growth Hormone Thyroid Hormone Orotic Acid Central Nervous System Development Early Neonatal Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Karlson, Perspectives Biol. Med. 6, 203–214 (1963).Google Scholar
  2. 2.
    M. Zalokar, in: “Control Mechanisms in Cellular Processes” ( D. M. Bonner, ed.), pp. 87–140, Ronald Press, New York (1961).Google Scholar
  3. 3.
    F. Jacob and J. Monod, J. Mol. Biol. 3, 318–356 (1961).PubMedCrossRefGoogle Scholar
  4. 4.
    C. J. Shellabarger, in: “The Thyroid Gland” (R. Pitt-Rivers and W. R. Trotter, eds.), Vol. 1, pp. 187–198, Butterworth, Washington (1964).Google Scholar
  5. 5.
    S. E. Geel and P. S. Timiras, Endocrinology 80, 1069–1074 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    J. T. Eayrs, Animal Behaviour 7, 1-17 (1959).Google Scholar
  7. 7.
    M. Hamburgh, E. Lynn, and E. P. Weiss, Anat. Record 150, 147–161 (1964).CrossRefGoogle Scholar
  8. 8.
    J. Legrand, Arch. Anat. Microscop. Morphol. Exp. 56, 205–244 (1967).Google Scholar
  9. 9.
    P. B. Bradley, J. T. Eayrs, A. Glass, and R. W. Heath, Electroencephalog. Clin. Neurophysiol. 13, 577–586 (1961).CrossRefGoogle Scholar
  10. 10.
    R. Harris, M. Della Rovere, and P. F. Prior, Arch. Disease Childhood 40, 612–617 (1965).CrossRefGoogle Scholar
  11. 1l.
    N. Hatotani and P. S. Timiras, Neuroendocrinology 2, 147–156 (1967).CrossRefGoogle Scholar
  12. 12.
    J. T. Eayrs and W. A. Lishman, Brit. J. Animal Behaviour 3, 17–24 (1955).CrossRefGoogle Scholar
  13. 13.
    J. T. Eayrs and S. Levine, J. Endocrinol. 25, 505–513 (1963).CrossRefGoogle Scholar
  14. 14.
    J. J. Kollros, in: “Growth of the Nervous System” Ciba Foundation Symposium, pp. 179–199, Little, Brown, Boston (1968).Google Scholar
  15. 15.
    E. C. Wolff and J. Wolff, in: “The Thyroid Gland” (R. Pitt-Rivers and W. R. Trotter, eds.), Vol. 1, pp. 237–282, Butterworth, Washington (1964).Google Scholar
  16. 16.
    E. Giacobini, in: “Morphological and Biochemical Correlates of Neural Activity” ( M. M. Cohen and R. S. Snider, eds.), pp. 15–38, Harper and Row, New York (1964).Google Scholar
  17. 17.
    D. R. Curtis, R. W. Ryall, and J. C. Watkins, in: “Pharmacology of Cholinergie and Adrenergic Transmission” ( G. B. Koelle, W. W. Douglas, and A. Carlsson, eds.), pp. 137–145, The Macmillan Co., New York (1965).Google Scholar
  18. 18.
    M. Hamburgh and L. B. Flexner, J. Neurochem. 1, 279–288 (1957).PubMedCrossRefGoogle Scholar
  19. 19.
    J. T. Eayrs, Acta Anat. 25, 160–183 (1955).PubMedCrossRefGoogle Scholar
  20. 20.
    A. A. Abdel-Latif, J. Brody, and A. Ramahi, J. Neurochem. 14, 1133–1141 (1967).PubMedCrossRefGoogle Scholar
  21. 21.
    F. E. Samson, Jr. and D. J. Quinn, J. Neurochem. 14, 421–427 (1967).CrossRefGoogle Scholar
  22. 22.
    T. Valcana and P. S. Timiras, J. Neurochem. 16, 935–943 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    S. E. Geel, T. Valcana, and P. S. Timiras, Brain Res. 4, 143–150 (1967).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Roberts and C. E. Zomzely, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, pp. 91–102. Elsevier Publishing Company, New York (1966).Google Scholar
  25. 25.
    R. BalAzs, S. Kovacs, P. Teichgraber, W. Cocks, and J. T. Eayrs, J. Neurochem. 15, 1335–1349 (1968).PubMedCrossRefGoogle Scholar
  26. 26.
    C. A. Garcia Argiz, J. M. Pasquini, B. Kaphin, and C. J. Goméz, Brain Res. 6, 635–646 (1967).PubMedCrossRefGoogle Scholar
  27. 27.
    J. F. Fazekas, F. B. Graves, and R. W. Alman, Endocrinology 48, 169–174 (1951).PubMedCrossRefGoogle Scholar
  28. 28.
    J. M. Reiss, M. Reiss, and A. F. Wyatt, Proc. Soc. Exp. Biol. Med. 93, 19–22 (1951).Google Scholar
  29. 29.
    R. Michels, J. Cason, and L. Sokoloff, Science 140, 1417–1418 (1963).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Gelber, P. L. Campbell, G. E. Deibler, and L. Sokoloff, J. Neurochem. 11, 221–229 (1964).PubMedCrossRefGoogle Scholar
  31. 31.
    C. B. Klee and L. Sokoloff, J. Neurochem. 11, 709–716 (1964).PubMedCrossRefGoogle Scholar
  32. 32.
    J. R. Tata, in: “Mechanisms of Hormone Action” ( P. Karlson, ed.), pp. 173–184, Academic Press, New York (1965).Google Scholar
  33. 33.
    M. K. Gaitonde and D. Richter, J. Neurochem. 13, 1309–1316 (1966).PubMedCrossRefGoogle Scholar
  34. 34.
    C. J. Gómez and A. E. Ramirez de Guglielmone, J. Neurochem 14, 1119–1128 (1967).PubMedCrossRefGoogle Scholar
  35. 35.
    E. Mussini, F. Marcucci, and S. Garattini, J. Neurochem. 14, 551–554 (1967).PubMedCrossRefGoogle Scholar
  36. 36.
    A. N. Contopoulos, M. E. Simpson, and A. A. Koneff, Endocrinology 63, 642–653 (1958).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Solomon and R. O. Greep, Endocrinology 65, 158–164 (1959).PubMedCrossRefGoogle Scholar
  38. 38.
    R. A. Schooley, S. Friedkin, and E. S. Evans, Endocrinology 79, 1053–1057 (1966).PubMedCrossRefGoogle Scholar
  39. 39.
    H. Iwatsubo, K. Omori, Y. Okada, M. Fukuchi, K. Miyai, H. Abe, and Y Kumahara, J. Clin. Endocrinol. Metab. 27, 1751–1754 (1967).PubMedCrossRefGoogle Scholar
  40. 40.
    M. E. Simpson, C. W. Asling, and H. M. Evans, Yale J. Biol. Med. 23, 1–27 (1950).PubMedGoogle Scholar
  41. 41.
    C. C. Widnell and J. R. Tata, Biochem. J 98, 621–629 (1966).PubMedGoogle Scholar
  42. 42.
    S. E. Geel and P. S. Timiras, in: “Hormones in Development,” Conference, Nottingham University, Nottingham, England, September, 1968 (M. Hamburgh and E. J. W. Barrington, eds.), National Foundation, in press.Google Scholar
  43. 43.
    S. E. Geel and P. S. Timiras, Brain Res. 4, 135–142 (1967).PubMedCrossRefGoogle Scholar
  44. 44.
    J. M. Pasquini, B. Kaphin, C. A. Garcia Argiz, and C. J. Goméz, Brain Res. 6, 621–634 (1967).PubMedCrossRefGoogle Scholar
  45. 45.
    J. T. Eayrs, Growth 25, 175–189 (1961).PubMedGoogle Scholar
  46. 46.
    R. Baldzs, in:“Hormones in Development,” Conference, Nottingham University, Nottingham, England, September, 1968 (M. Hamburgh and E. J. W. Barrington, eds.), National Foundation, in press.Google Scholar
  47. 47.
    O. Hechter, K. Yoshinaga, I. D. K. Halkerston, C. Cohn, and P. Dodd, in: “Molecular Basis of Some Aspects of Mental Activity” (O. Walaas, ed.), Vol. 1, pp. 291–341, Academic Press, New York (1966).Google Scholar
  48. 48.
    D. M. Woodbury and A. Vernadakis, in: “Methods in Hormone Research” (R. I. Dorfmann, ed.), Vol. 5, pp. 1–57, Academic Press, New York (1966).Google Scholar
  49. 49.
    A. Vernadakis and P. S. Timiras, in: “Proceedings of the Second International Congress of Hormonal Steroids,” Milan, May, 1966, Excerpta Medica International Congress Series No. 125, p. 84.Google Scholar
  50. 50.
    G. W. Harris, Endocrinology 75, 627–648 (1964).PubMedCrossRefGoogle Scholar
  51. 51.
    G. W. Harris and S. Levine, J. Physiol. (London) 181, 379–400 (1965).Google Scholar
  52. 52.
    R. A. Gorski and J. W. Wagner, Endocrinology 76, 226–239 (1965).PubMedCrossRefGoogle Scholar
  53. 53.
    H. H. Feder and R. E. Whalen, Science 147, 306–307 (1965).CrossRefGoogle Scholar
  54. 54.
    K. L. Grady, C. H. Phoenix, and W. C. Young, J. Compar. Physiol. Psych. 59, 176–182 (1965).CrossRefGoogle Scholar
  55. 55.
    C. A. Barraclough and R. A. Gorski, Endocrinology 68, 68–79 (1961).PubMedCrossRefGoogle Scholar
  56. 56.
    G. W. Harris and R. P. Michael, J. Physiol. (London) 171, 275–301 (1964).Google Scholar
  57. 57.
    R. P. Michael, Brit. Med. Bull. 21, 87–90 (1965).PubMedGoogle Scholar
  58. 58.
    E. Terasawa and P. S. Timiras, Endocrinology 83, 207–216 (1968).PubMedCrossRefGoogle Scholar
  59. 59.
    E. Terasawa and P. S. Timiras, Am. J. Physiol. 215, 1462–1467 (1968).PubMedGoogle Scholar
  60. 60.
    P. S. Timiras, A. Vernadakis, and N. M. Sherwood, in: “Biology of Gestation” (N. S. Assali, ed.), Vol. 2, pp. 261–319, Academic Press, New York (1968).Google Scholar
  61. 61.
    J. Kato and C. A. Villee, Endocrinology 80, 567–575 (1967).PubMedCrossRefGoogle Scholar
  62. 62.
    A. J. Eisenfeld and J. Axelrod, J. Pharmacol. Exp. Therap. 150, 469–475 (1965).Google Scholar
  63. 63.
    D. W. Pfaff, Science 161, 1355–1356 (1968).PubMedCrossRefGoogle Scholar
  64. 64.
    D. E. Woolley, C. F. Holinka, and P. S. Timiras, Endocrinology 84, 157–161 (1969).PubMedCrossRefGoogle Scholar
  65. 65.
    L. M. Heim and P. S. Timiras, Endocrinology 72, 598–606 (1963).PubMedCrossRefGoogle Scholar
  66. 66.
    G. L. Irvine, T. W. Ransom, W. H. Westbrook, and P. S. Timiras, in: “Ilnd International Congress on Hormonal Steroids,” Milan, May, 1966, Excerpta Medica International Congress Series No. 111, Abstract No. 366, p. 211 (1966).Google Scholar
  67. 67.
    J. J. Curry and L. M. Heim, Nature 209, 915–916 (1966).PubMedCrossRefGoogle Scholar
  68. 68.
    R. Casper, A. Vernadakis, and P. S. Timiras, Brain Res. 5, 524–526 (1967).PubMedCrossRefGoogle Scholar
  69. 69.
    D. M. Woodbury, Pharmacol. Rev. 10, 275–357 (1958).PubMedGoogle Scholar
  70. 70.
    A. Vernadakis and D. M. Woodbury, J. Pharmacol. Exp. Therap. 139, 110-113 (1963).Google Scholar
  71. 71.
    S. Schapiro, Gen. Comp. Endocrinol. 10, 214–228 (1968).PubMedCrossRefGoogle Scholar
  72. 72.
    E. Howard, J. Neurochem 12, 181–191 (1965).PubMedCrossRefGoogle Scholar
  73. 73.
    M. Granich and P. S. Timiras, in: “Hormones in Development,” Conference, Nottingham University, Nottingham, England, September, 1968 (M. Hamburgh and E. J. W. Barrington, eds.), National Foundation, in press.Google Scholar
  74. 74.
    M. Hamburgh, Develop. Biol. 13, 15–30 (1966).PubMedCrossRefGoogle Scholar
  75. 75.
    A. Vernadakis and P. S. Timiras, Experientia 23, 467 (1967).CrossRefGoogle Scholar
  76. 76.
    H. G. Williams-Ashman, Cancer Res. 25, 1096–1120 (1965).Google Scholar
  77. 77.
    G. C. Mueller, in: “Mechanisms of Hormone Action” ( P. Karlson, ed.), pp. 228–239, Academic Press, New York (1965).Google Scholar
  78. 78.
    T H Hamilton, Science 161, 649–661 (1968).PubMedCrossRefGoogle Scholar
  79. 79.
    H. G. Williams-Ashman, J. Cellular Comp. Physiol. (Suppl. 1) 66, 111-124 (1965).Google Scholar
  80. 80.
    P. Feigelson and M. Feigelson, in: “Mechanisms of Hormone Action” ( P. Karlson, ed.), pp. 246–257, Academic Press, New York (1965).Google Scholar
  81. 81.
    F. T. Kenney, W. D. Wicks, and D. L. Greenman, in: Symposium on hormonal control of protein biosynthesis, J. Cellular Comp. Physiol. (Suppl. 1) 66, 125–136 (1965).Google Scholar
  82. 82.
    R. D. Ray, M. E. Simpson, C. H. Li, C. W. Asling, and H. M. Evans, Am. J. Anat. 86, 479–516 (1950).PubMedCrossRefGoogle Scholar
  83. 83.
    D. G. Walker, M. E. Simpson, C. W. Asling, and H. M. Evans, Anat. Record 106, 539–5M (1950).CrossRefGoogle Scholar
  84. 84.
    D. G. Walker, C. W. Asling, M. E. Simpson, C. H. Li, and H. M. Evans, Anat. Record 114, 19–47 (1952).CrossRefGoogle Scholar
  85. 85.
    F. C. Greenwood, W. M. Hunter, and V. J. Marrian, Brit. Med. J. 1, (5374) 25–26 (1964).PubMedCrossRefGoogle Scholar
  86. 86.
    H. P. G. Seckel, A.M.A. J. Diseases Children 99, 349–379 (1960).Google Scholar
  87. 87.
    C. W. Asling, D. G. Walker, M. E. Simpson, C. H. Li, and H. M. Evans, Anat. Record 114, 49–65 (1952).CrossRefGoogle Scholar
  88. 88.
    S. Zamenhof, J. Mosley, and E. Schuller, Science 152, 1396–1397, (1966).PubMedCrossRefGoogle Scholar
  89. 89.
    B. G. Clendinnen and J. T. Eayrs, J. Endocrinol. 22, 183–193 (1961).PubMedCrossRefGoogle Scholar
  90. 90.
    J. B. Block and W. B. Essman, Nature 205, 1136–1137 (1965).PubMedCrossRefGoogle Scholar
  91. 91.
    M. C. Diamond, Brain Res. 7, 407–418 (1968).PubMedCrossRefGoogle Scholar
  92. 92.
    A. Korner, Recent Prog. Hormone Res. 21, 205–240 (1965).Google Scholar
  93. 93.
    W. A. Himwich, Intern. Rev. Neurobiol. 4, 117–158 (1962).CrossRefGoogle Scholar
  94. 94.
    J. R. Tata, Nature 219, 331–337 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Stanley E. Geel
    • 1
  • Paola S. Timiras
    • 1
  1. 1.Department of Physiology-AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations