Fast Axoplasmic Transport of Proteins and Polypeptides in Mammalian Nerve Fibers


Using isotopic labeling techniques, it has been verified that in nerve there is a transport system constantly moving materials from the soma out into the axons and likely also into the post-synaptic cell. (1–3) The modern view of neuron is that it is a cell with a high level of protein synthesis,(4)and the preponderance of evidence discussed in the above reviews indicates that most of the synthesis takes place in the soma, where a high level of RNA is present in the ribosomes of the Nissl bodies. Some studies, however, indicate that synthesis is possible in other parts of the cell (see below and Austin and Morgan(5)).


Sciatic Nerve Fast Component Ventral Root Motor Fiber Fast Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Lubinska, in: “Mechanisms of neural regeneration” (M. Singer and J. P. Schadé, eds.)Prog. Brain Res. 13, 1–71, Elsevier, Amsterdam (1964).Google Scholar
  2. 2.
    S. Ochs, in: “Macromolecules and Behavior” ( J. Gaito, ed.), Appleton-CenturyCrofts, New York (1966).Google Scholar
  3. 3.
    S. Barondes (ed.), Axoplasmic transport, Neurosci. Res. Prog. Bull. 5 (1967).Google Scholar
  4. 4.
    A. Lajtha, Int. Rev. Neurobiol. 6 1–98 (1964).CrossRefGoogle Scholar
  5. 5.
    L. Austin and J. G. Morgan, J. Neurochem. 14377–387 (1967).CrossRefGoogle Scholar
  6. 6.
    P. Weiss and H. B. Hiscoe, J. Exp. Zool. 107, 315–395 (1948).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Dählstrom and J. Häggendal, Acta Physiol. Scand. 67, 278–288 (1966).Google Scholar
  8. 8.
    G. A. Kerkut, A. Shapira, and R. J. Walker, Comp. Biochem. Physiol. 23, 729–748 (1967).Google Scholar
  9. 9.
    S. Ochs, J. Johnson, and M.-H. Ng, J. Neurochem. 14, 317–331 (1967).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Ochs, J. Johnson, and A. M. Kidwai, Fed. Proc. 27, 235 (1968).Google Scholar
  11. 11.
    S. Ochs and J. Johnson, J. Neurochem. 16, 845–853 (1969).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Ochs, D. E. Dalrymple, and G. Richards, Exp. Neurol. 5, 349–363 (1962).PubMedCrossRefGoogle Scholar
  13. 13.
    N. Miani, J. Neurochem. 10, 859–874 (1963).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Lasek, Brain Res. 7, 360–377 (1968).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Weiss, H. Wang, A. C. Taylor, and M. V. Edds, Jr., Am. J. Physiol. 143, 521–540 (1945).Google Scholar
  16. 16.
    A. C. Taylor and P. Weiss, Proc. Nail. Acad. Sci. U.S. 54, 1521–1527 (1965).CrossRefGoogle Scholar
  17. 17.
    B. Droz and C. P. Leblond, J. Comp. Neurol. 121, 325–346 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Ochs, M. I. Sabri, and J. Johnson, Science 163, 686–687 (1969) PubMedCrossRefGoogle Scholar
  19. 19.
    J. J. Bray and L. Austin, J. Neurochem. 15, 731–740 (1968).PubMedCrossRefGoogle Scholar
  20. 20.
    B. S. McEwen and B. Grafstein, J. Cell Biol. 38, 494–508 (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Ochs, in: Axoplasmic transport (S. Barondes, ed.), Neurosci. Res. Prog. Bull. 5 (1967).Google Scholar
  22. 22.
    A. M. Kidwai and S. Ochs, J. Neurochem. 16, 1105–1112 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Edström, J. Neurochem. 14, 437–446 (1966).Google Scholar
  24. 24.
    E. Koenig, J. Neurochem. 14, 437–446 (1967).PubMedCrossRefGoogle Scholar
  25. 25.
    A. P. de Iraldi and E. De Robertis, Z. Zellforsch. 87, 330–334 (1968).CrossRefGoogle Scholar
  26. 26.
    S. Ochs and N. Ranish, J. Neurobiol.,in press.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • S. Ochs
    • 1
  1. 1.Department of PhysiologyIndiana University Medical CenterIndianapolisUSA

Personalised recommendations