Advertisement

Protein Metabolism and Functional Activity

  • Derek Richter

Abstract

Studies of brain metabolism in vivo have shown that, besides having a high rate of consumption of oxygen and glucose, the brain synthesizes protein at a relatively high rate. During the period of early foetal development protein synthesis is more active in the brain than in most other organs, and the net synthesis of new protein results in a rapid increase in the relative size of the brain. There is a partial falling off in the rate as growth and differentiation come to an end, but it has been shown that active protein synthesis still persists after growth has finished and it continues at a considerable rate throughout the whole of adult life.

Keywords

Protein Metabolism Nerve Cell Body Neurosecretory Cell Synaptic Terminal Glutamate Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. B. Ansell and D. Richter, Biochim. Biophys. Acta 13, 92 (1954).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Balazs, J. Neurochem. 12, 63–76 (1965).PubMedCrossRefGoogle Scholar
  3. 3.
    R. BalAzs, D. Dahl, and J. R. Harwood, J. Neurochem. 13, 897 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Balizs and R. J. Haslam, Biochem. J. 94, 131–142 (1965).Google Scholar
  5. 5.
    R. Balizs, K. Magyar, and D. Richter, in: “Comparative Neurochemistry,” ( D. Richter, ed.), pp. 225–247, Pergamon, Oxford (1964).Google Scholar
  6. 6.
    P. Banks and K. Helle, Biochem. J. 97, 40c - 41c (1965).PubMedGoogle Scholar
  7. 7.
    E. L. Bennett, M. C. Diamond, D. Krech, and M. R. Rosenzweig, Science 146, 610 (1964).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Berl, A. Lajtha, and H. Waelsch, J. Neurochem. 7, 186 (1961).CrossRefGoogle Scholar
  9. 9.
    H. Blaschko, A. D. Smith and H. Winkler, Nannyn-Schmiedebergs Arch. Exp. Path. Pharmak. 253, 23 (1966).Google Scholar
  10. 10.
    S. O. Brattghrd, Acta Radiol. (Suppl.) 96, 1 (1952).Google Scholar
  11. 11.
    I. U. S. Chentsov, V. L. Boroviagin, and B. I. Brodskii, Biophysics 6, 61 (1961).Google Scholar
  12. 12.
    D. H. Clouet and M. K. Gaitonde, J. Neurochem. 1, 126–133 (1956).PubMedCrossRefGoogle Scholar
  13. 13.
    D. H. Clouet and D. Richter, J. Neurochem. 3, 219 (1959).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Cohn, M. K. Gaitonde, and D. Richter, J. Physiol. 126, 7P (1954).PubMedGoogle Scholar
  15. 15.
    D. R. Curtis, L. Hösli, and G. A. R. Johnston, Exp. Brain Res. 6, 1–18 (1968).PubMedCrossRefGoogle Scholar
  16. 16.
    W. Dingman, M. B. Sporn, and R. K. Davies, J. Neurochem. 4, 154 (1959).PubMedCrossRefGoogle Scholar
  17. 17.
    K. A. C. Elliott and N. M. Van Gelder, J. Neurochem. 3, 28 (1958).PubMedCrossRefGoogle Scholar
  18. 18.
    M. H. Epstein and J. S. O’Connor, J. Neurochem. 13, 907–911 (1966).PubMedCrossRefGoogle Scholar
  19. 19.
    L. B. Flexner, in: “Biochemistry of the Developing Nervous System” ( H. Waelsch, ed.), p. 281, Academic Press, New York (1955).Google Scholar
  20. 20.
    M. K. Gaitonde, Biochem. J. 95, 803 (1965).Google Scholar
  21. 21.
    M. K. Gaitonde, S. A. Marchi, and D. Richter, Proc. Roy. Soc. B 160, 124 (1964).CrossRefGoogle Scholar
  22. 22.
    M. K. Gaitonde and D. Richter, Proc. Roy. Soc. B 145, 83 (1956).CrossRefGoogle Scholar
  23. 23.
    M. K. Gaitonde and D. Richter, J. Neurochem. 13, 1309–1318 (1966).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Geiger, N. Horvath, and Y. Kawakita, J. Neurochem. 5, 311 (1960).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Grande and D. Richter, J. Physiol. Lond. 111, 57P (1950).PubMedGoogle Scholar
  26. 26.
    B. Haber, Canad. J. Biochem. 43, 865 (1965).CrossRefGoogle Scholar
  27. 27.
    A. Hamburger, B. O. H. Rosengren, and B. Tengroth, Acta Opthal. (Kbh.) 42, 951 ed.), (1964).Google Scholar
  28. 28.
    C. Hebb and A. Silver, in: “Protides of theBiological Fluids,” p. 179 (H. Peeters, Elsevier, AmsterdamGoogle Scholar
  29. 29.
    H. Hydén and B. McEwen, Proc. Natl. Acad. Sci. U.S. 55, 354 (1966).CrossRefGoogle Scholar
  30. 30.
    H. Hydén and A. Pigon, J. Neurochem. 6, 57 (1960).PubMedCrossRefGoogle Scholar
  31. 31.
    L. L. Iversen and M. J. Neal, J. Neurochem. 15, 1141–1149 (1968).PubMedCrossRefGoogle Scholar
  32. 32.
    H. M. Jasper, R. T. Khan, and K. A. C. Elliott, Science 147, 1448 (1965).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Jung, Exp. Cell. Res. (Suppl.) 5, 262 (1958).Google Scholar
  34. 34.
    R. I. Katz, T. N. Chase, and I. J. Kopin, J. Neurochem. 16, 961–967 (1969).PubMedCrossRefGoogle Scholar
  35. 35.
    I. J. Kopin and R. J. Baldessarini, personal communication.Google Scholar
  36. 36.
    K. Krnjevie and S. Schwartz, Nature 211, 1372–1374 (1966).CrossRefGoogle Scholar
  37. 37.
    A. Lajtha, S. Furst, A. Gerstein, and H. Waelsch, J. Neurochem. 1, 289 (1957).PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Machiyama, R. Baldzs, and T. Julian, Biochem. J. 96, 68P (1965).Google Scholar
  39. 39.
    Y. Machiyama, R. Baldzs, and D. Richter, J. Neurochem. 14, 591–593 (1967).PubMedCrossRefGoogle Scholar
  40. 40.
    G. J. Maletta and P. S. Timiras, J. Neurochem. 15, 787–794 (1968).PubMedCrossRefGoogle Scholar
  41. 41.
    N. Miani, J. Neurochem. 10, 859 (1963).PubMedCrossRefGoogle Scholar
  42. 42.
    F. N. Minard and D. Richter, J. Neurochem. 15, 1463–1468 (1968).PubMedCrossRefGoogle Scholar
  43. 43.
    B. W. Moore, Biochem. Biophys. Res. Commun. 19, 739 (1965).PubMedCrossRefGoogle Scholar
  44. 44.
    B. W. Moore, V. J. Perez, and M. Gehring, J. Neurochem. 15, 265–272 (1968).PubMedCrossRefGoogle Scholar
  45. 45.
    M. J. Neal and L. L. Iversen, J. Neurochem. 16, 1245–1252 (1969).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Otsuki, S. Watanabe, K. Ninomiya, T. Hoaki, and N. Okumura, J. Neurochem. 15, 859–866 (1968).PubMedCrossRefGoogle Scholar
  47. 47.
    A. J. Patel and R. Bal6zs, Biochem. J., 111, 17P (1969).PubMedGoogle Scholar
  48. 48.
    J. W. Phillis and G. C. Chong, Nature 207, 1253 (1965).PubMedCrossRefGoogle Scholar
  49. 49.
    F. N. Pitts and C. Quick, J. Neurochem. 14„561–570 (1967).Google Scholar
  50. 50.
    D. Richter, Brit. Med. Bull. 17, 118–121 (1961).PubMedGoogle Scholar
  51. 51.
    D. Richter, “Aspects of learning and memory,” pp. 77–99, Heinemann, London (1966).Google Scholar
  52. 52.
    D. Richter, M. K. Gaitonde, and P. Cohn, in: “Structure and Function of the Cerebral Cortex,” p. 340 ( D. B. Tower and J. P. Schadé, eds.), Elsevier, Amsterdam (1960).Google Scholar
  53. 53.
    R. B. Roberts, J. B. Flexner, and L. B. Flexner, J. Neurochem. 4, 78–90 (1959).PubMedCrossRefGoogle Scholar
  54. 54.
    L. Salganicoff and E. De Robertis, J. Neurochem. 12, 287–309 (1965).PubMedCrossRefGoogle Scholar
  55. 55.
    K. L. Sims, J. Witztum, C. Quick, and F. N. Pitts, J. Neurochem. 15, 667–672Google Scholar
  56. 58.
    V. Srinivasan, M. J. Neal, and J. F. Mitchell, J. Neurochem. 16, 1235–1244 (1969).PubMedCrossRefGoogle Scholar
  57. 59.
    R. Vrba, M. K. Gaitonde, and D. Richter, J. Neurochem. 9, 465–475 (1962).PubMedCrossRefGoogle Scholar
  58. 60.
    P. Weiss and H. B. Hiscoe, J. Exp. Zool. 107, 315 (1948).PubMedCrossRefGoogle Scholar
  59. 61.
    R. Werman, R. A. Davidoff, and M. H. Aprison, Nature 214, 681–683 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Derek Richter
    • 1
  1. 1.Medical Research Council Neuropsychiatric Research UnitCarshalton and EpsomEngland

Personalised recommendations