Protein Synthesis in the Nervous System

  • Sidney Roberts
  • Claire E. Zomzely
  • S. C. Bondy

Abstract

Within the past few years concepts of the nature and regulation of processes involved in the synthesis of proteins in the nervous system have undergone revolutionary alterations. To some extent these changes reflect expanding knowledge of the intimate details of the diverse amino acid-incorporating systems present in most cells. However, the discovery of specialized and, possibly, unique mechanisms in neural elements has been of equal significance for an understanding of these processes. The functional concomitants of the various facets of protein synthesis in the nervous system pose one of the most fascinating problems of modern biological research.

Keywords

Sucrose Magnesium Sodium Chloride Morphine Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Roberts, Protein synthesis, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. V, Plenum Press, New York (to be published).Google Scholar
  2. 2.
    S. L. Palay and G. E. Palade, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1, 69–88 (1955).PubMedCrossRefGoogle Scholar
  3. 3.
    R Ekholm and H. Hydén, Polysomes from microdissected fresh neurons, J. Ultrastructure Res. 13, 269–280 (1965).CrossRefGoogle Scholar
  4. 4.
    C. Sotelo and S. L. Palay, The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells, J. Cell Biol. 36, 151–179 (1968).CrossRefGoogle Scholar
  5. 5.
    D. Bodian, A suggestive relation hip of nerve cell RNA with specific synaptic sites, Proc. Natl. Acad. Sci. U.S. 53, 418–425 (1965).CrossRefGoogle Scholar
  6. 6.
    E. Mugnaini and F. Walberg, Ultrastructure of neuroglia, Ergeb. Anat. u. Enlwicklungsgeschichte (Abt. III Z. ges. Anat.) 37, 194–236 (1964).Google Scholar
  7. 7.
    C. E. Zomzely, S. Roberts, C. P. Gruber, and D. M. Brown, Cerebral protein synthesis. II. Instability of cerebral messenger ribonucleic acid—ribosome complexes, J. Biol. Chem. 243, 5396–5409 (1968).PubMedGoogle Scholar
  8. 8.
    C. E. Zomzely, S. Roberts, D. M. Brown, and C. Provost, Cerebral protein synthesis. I. Physical properties of cerebral ribosomes and polyribosomes, J. Mol. Biol. 20, 455–468 (1966).Google Scholar
  9. 9.
    M. L. Petermann, “The Physical and Chemical Properties of Ribosomes,” Elsevier Publishing Company, Amsterdam (1964).Google Scholar
  10. 10.
    Y. Takahashi, K. Mase, and H. Sugano, Preparation of polysomes from rat brain tissue, Biochim. Biophys. Acta 119, 627–629 (1966).Google Scholar
  11. 11.
    M. R. V. Murthy, Protein synthesis in growing rat tissues. II. Polyribosome concentration of brain and liver as a function of age, Biochim. Biophys. Acta 119, 599613 (1966).Google Scholar
  12. 12.
    A. J. Munro, R. J. Jackson, and A. Korner, Studies on the nature of polysomes, Biochem. J. 92, 289–299 (1964).PubMedGoogle Scholar
  13. 13.
    D. Schneider and S. Roberts, Base compositions of 18S and 28S RNA fractions from rat cerebral cortex, J. Neurochem. 15, 1469–1471 (1968).PubMedCrossRefGoogle Scholar
  14. 14.
    C. E. Zomzely, S. Roberts, D. M. Brown, and D. Rapaport, Isolation of 55-S ribonucleoprotein particles with amino acid-incorporating activity, Biochim. Biophys. Acta 103, 529–531 (1965).Google Scholar
  15. 15.
    S. Roberts and C. E. Zomzely, Regulation of protein synthesis in the brain, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, pp. 91–102, Elsevier Publishing Company, Amsterdam (1966).Google Scholar
  16. 16.
    H. Bielka, H. Welfle, M. Böttger, W. Förster, I. Schneiders, and A. Henske, Strukturveränderungen and dissoziation von leberribosomen in abhängigkeit von der Mg++-konzentration, European J. Biochem. 5, 183–190 (1968).Google Scholar
  17. 17.
    C. E. Zomzely, S. Roberts, and D. Rapaport, Regulation of cerebral metabolism of amino acids—III. Characteristics of amino acid incorporation into protein of microsomal and ribosomal preparations of rat cerebral cortex, J. Neurochem. 11, 567–582 (1964).PubMedCrossRefGoogle Scholar
  18. 18.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. VI. Preparation and properties of ribosomes, Biochim. Biophys. Acta 95, 132–145 (1965).Google Scholar
  19. 19.
    D. H. Clouet, M. Ratner, and N. Williams, [14C]leucine incorporation into brain ribosomes, Biochim. Biophys. Acta 123, 142–150 (1966).Google Scholar
  20. 20.
    S. H. Barondes and M. W. Nirenberg, Fate of a synthetic polynucleotide directing cell-free protein synthesis. I. Characteristics of degradation, Science 138, 810–817 (1962).PubMedCrossRefGoogle Scholar
  21. 21.
    A. L. Rubin and K. H. Stenzel, In vitro synthesis of brain protein, Proc. Natl. Acad. Sci. U.S. 53, 963–968 (1965).Google Scholar
  22. 22.
    M. K. Campbell, H. R. Mahler, W. J. Moore, and S. Tewari, Protein synthesis systems from rat brain, Biochemistry 5, 1174–1184 (1966).PubMedCrossRefGoogle Scholar
  23. 23.
    K. H. Stenzel, R. F. Aronson, and A. L. Rubin, In vitro synthesis of brain protein. II. Properties of the complete system, Biochemistry 5, 930–936 (1966).Google Scholar
  24. 24.
    Y. Takahashi, K. Mase, and S. Abe, The protein biosynthesis in a ribosomal system of the brain, J. Biochem. (Tokyo) 60, 363–371 (1966).Google Scholar
  25. 25.
    A. T. Campagnoni and H. R. Mahler, Isolation and properties of polyribosomes from cerebral cortex, Biochemistry 6, 956–967 (1967).PubMedCrossRefGoogle Scholar
  26. 26.
    M. H. Samli and S. Roberts, Properties of brain nuclear RNA fractions which stimulate amino acid incorporation in homologous ribosomal systems, J. Neurochem., in press.Google Scholar
  27. 27.
    S. Roberts, Regulation of cerebral metabolism of amino acids—II. Influence of phenylalanine deficiency on free and protein-bound amino acids in rat cerebral cortex: Relationship to plasma levels, J. Neurochem. 10, 931–940 (1963).PubMedCrossRefGoogle Scholar
  28. 28.
    M. R. V. Murthy, Protein synthesis in growing rat tissues. I. Effect of various metabolites and inhibitors on phenylalanine incorporation by brain and liver ribosomes, Biochim. Biophys. Acta 119, 586–598 (1966).Google Scholar
  29. 29.
    D. H. Clouet and M. Ratner, The effect of morphine administration on the incorporation of [14C]leucine into protein in cell-free systems from rat brain and liver, J. Neurochem. 15, 17–23 (1968).PubMedCrossRefGoogle Scholar
  30. 30.
    S. C. Bondy and S. V. Perry, Incorporation of labeled amino acids in the soluble protein fraction of rabbit brain, J. Neurochem. 10, 603–609 (1963).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Yamagami, R. R. Fritz, and D. A. Rappoport, Biochemistry of the developing rat brain. VII. Changes in the ribosomal system and nuclear RNA’s, Biochim. Biophys. Acta 129, 532–547 (1966).Google Scholar
  32. 32.
    A. Gierer, Function of aggregated reticulocyte ribosomes in protein synthesis, J. Mol. Biol. 6, 148–157 (1963).PubMedCrossRefGoogle Scholar
  33. 33.
    J. O. Bishop, Reticulocyte ribosome fraction with an exceptional capacity for polyphenylalanine synthesis, Nature 208, 361–365 (1965).PubMedCrossRefGoogle Scholar
  34. 34.
    I. D. Herriman and G. D. Hunter, Cytoplasmic protein synthesis in mouse brain, J. Neurochem. 12, 937–947 (1965).PubMedCrossRefGoogle Scholar
  35. 35.
    S. C. Bondy and S. Roberts, Messenger ribonucleic acid of cerebral nuclei, Biochem. J. 105, 1111–1118 (1967).Google Scholar
  36. 36.
    S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo, J. Neurochem. 12, 373–387 (1965).CrossRefGoogle Scholar
  37. 37.
    S. C. Bondy and S. Roberts, Hybridizable ribonucleic acid of rat brain, Biochem. J. 109, 533–541 (1968).PubMedGoogle Scholar
  38. 38.
    S. Furst, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism of the brain—III. Incorporation of lysine into the proteins of various brain areas and their cellular fractions, J. Neurochem. 2, 216–225 (1958).PubMedCrossRefGoogle Scholar
  39. 39.
    T. C. Johnson and M. W. Luttges, The effects of maturation on in vitro protein synthesis by mouse brain cells, J. Neurochem. 13, 545–552 (1966).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Mase, Y. Takahashi, and K. Ogata, The incorporation of [14C]glycine into the protein of guinea pig brain cortex slices, J. Neurochem. 9, 281–288 (1962).CrossRefGoogle Scholar
  41. 41.
    K. Suzuki, S. R. Korey, and R. D. Terry, Studies on protein synthesis in brain microsomal system, J. Neurochem. 11, 403–412 (1964).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Takahashi and S. Abe, Distribution of amino acid activating enzymes in rabbit’s brain, Experientia 19, 186–187 (1963).CrossRefGoogle Scholar
  43. 43.
    H. Hydén, Behavior, neural function, and RNA, in “Progress in Nucleic Acid Research and Molecular Biology” (J. N. Davidson and W. E. Cohn, eds.), Vol. 6, pp. 187–218, Academic Press, New York (1967).Google Scholar
  44. 44.
    R. Landolt, H. H. Hess, and C. Thalheimer, Regional distribution of some chemical structural components of the human nervous system—I. DNA, RNA and gangli-oside sialic acid, J. Neurochem. 13, 1441–1452 (1966).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Hydén and E. Egyhazi, Glial RNA changes during a learning experiment in rats, Proc. Natl. Acad. Sci. U.S. 49, 618–624 (1963).CrossRefGoogle Scholar
  46. 46.
    E. G. Gray, Tissue of the central nervous system, in “Electron Microscopic Anatomy” (S. M. Kurtz, ed.), pp. 369–417, Academic Press, New York (1964).Google Scholar
  47. 47.
    K. R. Brizzee, J. Vogt, and X. Kharetchko, Postnatal changes in glial/neuron index with a comparison of methods of cell enumeration in the white rat, Prog. Brain Res. 4, 136–149 (1964).CrossRefGoogle Scholar
  48. 48.
    A. Lajtha, S. Furst, A. Gerstein, and H. Waelsch, Amino acid and protein metabolism of the brain—I. Turnover of free and protein bound lysine in brain and other organs, J. Neurochem. 1, 289–300 (1957).PubMedCrossRefGoogle Scholar
  49. 49.
    R. J. Schain, M. J. Carver, J. H. Copenhaver, and N. R. Underdahl, Protein metabolism in the developing brain: Influence of birth and gestational age, Science 156, 984–986 (1967).PubMedCrossRefGoogle Scholar
  50. 50.
    A. A. Abdel-Latif and L. G. Abood, In vivo incorporation of L-(14C) serine into phospholipids and proteins of the subcellular fractions of developing rat brain, J. Neurochem. 13, 1189–1196 (1966).PubMedCrossRefGoogle Scholar
  51. 51.
    S. S. Oja, Studies on protein metabolism in developing rat brain, Ann. Acad. Sci. Fenn. 131, 1–81 (1967).Google Scholar
  52. 52.
    F. Orrego and F. Lipmann, Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids, J. Biol. Chem. 242, 665–671 (1967).PubMedGoogle Scholar
  53. 53.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain.V. Cell-free incorporation of L-I1–14C]leucine into microsomal protein, Biochim. Biophys. Acta 95, 121–131 (1935).Google Scholar
  54. 14.
    C. E. Zomzely, S. Roberts, D. M. Brown, and D. Rapaport, Isolation of 55-S ribonucleoprotein particles with amino acid-incorporating activity, Biochim. Biophys. Acta 103, 529–531 (1965).Google Scholar
  55. 15.
    S. Roberts and C. E. Zomzely, Regulation of protein synthesis in the brain, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, pp. 91–102, Elsevier Publishing Company, Amsterdam (1966).Google Scholar
  56. 16.
    H. Bielka, H. Welfle, M. Böttger, W. Förster, I. Schneiders, and A. Henske, Strukturveränderungen and dissoziation von leberribosomen in abhängigkeit von der Mg++-konzentration, European J. Biochem. 5, 183–190 (1968).Google Scholar
  57. 17.
    C. E. Zomzely, S. Roberts, and D. Rapaport, Regulation of cerebral metabolism of amino acids—III. Characteristics of amino acid incorporation into protein of microsomal and ribosomal preparations of rat cerebral cortex, J. Neurochem. 11, 567–582 (1964).PubMedCrossRefGoogle Scholar
  58. 18.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. VI. Preparation and properties of ribosomes, Biochim. Biophys. Acta 95, 132–145 (1965).Google Scholar
  59. 19.
    D. H. Clouet, M. Ratner, and N. Williams, [14C]leucine incorporation into brain ribosomes, Biochim. Biophys. Acta 123, 142–150 (1966).Google Scholar
  60. 20.
    S. H. Barondes and M. W. Nirenberg, Fate of a synthetic polynucleotide directing cell-free protein synthesis. I. Characteristics of degradation, Science 138, 810–817 (1962).PubMedCrossRefGoogle Scholar
  61. 21.
    A. L. Rubin and K. H. Stenzel, In vitro synthesis of brain protein, Proc. Natl. Acad. Sci. U.S. 53, 963–968 (1965).Google Scholar
  62. 22.
    M. K. Campbell, H. R. Mahler, W. J. Moore, and S. Tewari, Protein synthesis systems from rat brain, Biochemistry 5, 1174–1184 (1966).PubMedCrossRefGoogle Scholar
  63. 23.
    K. H. Stenzel, R. F. Aronson, and A. L. Rubin, In vitro synthesis of brain protein. II. Properties of the complete system, Biochemistry 5, 930–936 (1966).Google Scholar
  64. 24.
    Y. Takahashi, K. Mase, and S. Abe, The protein biosynthesis in a ribosomal system of the brain, J. Biochem. (Tokyo) 60, 363–371 (1966).Google Scholar
  65. 25.
    A. T. Campagnoni and H. R. Mahler, Isolation and properties of polyribosomes from cerebral cortex, Biochemistry 6, 956–967 (1967).PubMedCrossRefGoogle Scholar
  66. 26.
    M. H. Samli and S. Roberts, Properties of brain nuclear RNA fractions which stimulate amino acid incorporation in homologous ribosomal systems, J. Neurochem., in press.Google Scholar
  67. 27.
    S. Roberts, Regulation of cerebral metabolism of amino acids—II. Influence of phenylalanine deficiency on free and protein-bound amino acids in rat cerebral cortex: Relationship to plasma levels, J. Neurochem. 10, 931–940 (1963).PubMedCrossRefGoogle Scholar
  68. 28.
    M. R. V. Murthy, Protein synthesis in growing rat tissues. I. Effect of various metabolites and inhibitors on phenylalanine incorporation by brain and liver ribosomes, Biochim. Biophys. Acta 119, 586–598 (1966).Google Scholar
  69. 29.
    D. H. Clouet and M. Ratner, The effect of morphine administration on the incorporation of [14C]leucine into protein in cell-free systems from rat brain and liver, J. Neurochem. 15, 17–23 (1968).PubMedCrossRefGoogle Scholar
  70. 30.
    S. C. Bondy and S. V. Perry, Incorporation of labeled amino acids in the soluble protein fraction of rabbit brain, J. Neurochem. 10, 603–609 (1963).PubMedCrossRefGoogle Scholar
  71. 31.
    S. Yamagami, R R Fritz, and D. A. Rappoport, Biochemistry of the developing rat brain. VII. Changes in the ribosomal system and nuclear RNA’s, Biochim. Biophys. Acta 129, 532–547 (1966).Google Scholar
  72. 32.
    A. Gierer, Function of aggregated reticulocyte ribosomes in protein synthesis, J. Mol. Biol. 6, 148–157 (1963).PubMedCrossRefGoogle Scholar
  73. 33.
    J. O. Bishop, Reticulocyte ribosome fraction with an exceptional capacity for polyphenylalanine synthesis, Nature 208, 361–365 (1965).PubMedCrossRefGoogle Scholar
  74. 34.
    I. D. Herriman and G. D. Hunter, Cytoplasmic protein synthesis in mouse brain, J. Neurochem. 12, 937–947 (1965).PubMedCrossRefGoogle Scholar
  75. 35.
    S. C. Bondy and S. Roberts, Messenger ribonucleic acid of cerebral nuclei, Biochem. J. 105, 1111–1118 (1967).Google Scholar
  76. 36.
    S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo, J. Neurochem. 12, 373–387 (1965).CrossRefGoogle Scholar
  77. 37.
    S. C. Bondy and S. Roberts, Hybridizable ribonucleic acid of rat brain, Biochem. J. 109, 533–541 (1968).Google Scholar
  78. 38.
    S. Furst, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism of the brain—III. Incorporation of lysine into the proteins of various brain areas and their cellular fractions, J. Neurochem. 2, 216–225 (1958).PubMedCrossRefGoogle Scholar
  79. 39.
    T. C. Johnson and M. W. Luttges, The effects of maturation on in vitro protein synthesis by mouse brain cells, J. Neurochem. 13, 545–552 (1966).PubMedCrossRefGoogle Scholar
  80. 40.
    K. Mase, Y. Takahashi, and K. Ogata, The incorporation of [14C]glycine into the protein of guinea pig brain cortex slices, J. Neurochem. 9, 281–288 (1962).CrossRefGoogle Scholar
  81. 41.
    K. Suzuki, S. R. Korey, and R. D. Terry, Studies on protein synthesis in brain microsomal system, J. Neurochem. 11, 403–412 (1964).PubMedCrossRefGoogle Scholar
  82. 42.
    Y. Takahashi and S. Abe, Distribution of amino acid activating enzymes in rabbit’s brain, Experientia 19, 186–187 (1963).CrossRefGoogle Scholar
  83. 43.
    H. Hydén, Behavior, neural function, and RNA, in “Progress in Nucleic Acid Research and Molecular Biology” (J. N. Davidson and W. E. Cohn, eds.), Vol. 6, pp. 187–218, Academic Press, New York (1967).Google Scholar
  84. 44.
    R. Landolt, H. H. Hess, and C. Thalheimer, Regional distribution of some chemical structural components of the human nervous system—I. DNA, RNA and gangli-oside sialic acid, J. Neurochem. 13, 1441–1452 (1966).PubMedCrossRefGoogle Scholar
  85. 45.
    H. Hydén and E. Egyhfizi, Glial RNA changes during a learning experiment in rats, Proc. Natl. Acad. Sci. U.S. 49, 618–624 (1963).CrossRefGoogle Scholar
  86. 46.
    E. G. Gray, Tissue of the central nervous system, in “Electron Microscopic Anatomy” (S. M. Kurtz, ed.), pp. 369–417, Academic Press, New York (1964).Google Scholar
  87. 47.
    K. R. Brizzee, J. Vogt, and X. Kharetchko, Postnatal changes in glial/neuron index with a comparison of methods of cell enumeration in the white rat, Prog. Brain Res. 4, 136–149 (1964).CrossRefGoogle Scholar
  88. 48.
    A. Lajtha, S. Furst, A. Gerstein, and H. Waelsch, Amino acid and protein metabolism of the brain—I. Turnover of free and protein bound lysine in brain and other organs, J. Neurochem. 1, 289–300 (1957).PubMedCrossRefGoogle Scholar
  89. 49.
    R. J. Schain, M. J. Carver, J. H. Copenhaver, and N. R. Underdahl, Protein metabolism in the developing brain: Influence of birth and gestational age, Science 156, 984–986 (1967).PubMedCrossRefGoogle Scholar
  90. 50.
    A. A. Abdel-Latif and L. G. Abood, In vivo incorporation of L-(14C) serine into phospholipids and proteins of the subcellular fractions of developing rat brain, J. Neurochem. 13, 1189–1196 (1966).PubMedCrossRefGoogle Scholar
  91. 51.
    S. S. Oja, Studies on protein metabolism in developing rat brain, Ann. Acad. Sci. Fenn. 131, 1–81 (1967).Google Scholar
  92. 52.
    F. Orrego and F. Lipmann, Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids, J. Biol. Chem. 242, 665–671 (1967).PubMedGoogle Scholar
  93. 53.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. V. Cell-free incorporation of L-[1 14C]leucine into microsomal protein, Biochim. Biophys. Acta 95, 121–131 (1935).Google Scholar
  94. 54.
    D. H. Adams and L. Lim, Amino acid incorporation by preparations from the developing rat brain, Biochem. J. 99, 261–265 (1966).PubMedGoogle Scholar
  95. 55.
    L. Lim and D. H. Adams, Microsomal components in relation to amino acid incorporation by preparations from the developing rat brain, Biochem. J. 104, 229–238 (1967).PubMedGoogle Scholar
  96. 56.
    B. W. Moore, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19, 739–744 (1965).CrossRefGoogle Scholar
  97. 57.
    B. W. Moore and V. J. Perez, Specific acidic proteins of the nervous system, in: “Physiological and Biochemical Aspects of Nervous Integration” (F. D. Carlson, ed.), pp. 343–359, Prentice-Hall, Englewood Cliffs, New Jersey (1968).Google Scholar
  98. 58.
    B. S. McEwen and H. Hydén, A study of specific brain proteins on the semimicro scale, J. Neurochem. 13, 823–833 (1966).PubMedCrossRefGoogle Scholar
  99. 59.
    H. Hydén and B. McEwen, A glial protein specific for the nervous system, Proc. Natl. Acad. Sci. U.S. 55, 354–358 (1966).CrossRefGoogle Scholar
  100. 60.
    B. W. Moore, V. J. Perez, and M. Gehring, Assay and regional distribution of a protein characteristic of the nervous system, J. Neurochem. 15, 265–272 (1968).PubMedCrossRefGoogle Scholar
  101. 61.
    P. Benda, J. Lightbody, G. Sato, L. Levine, and W. Sweet, Differentiated rat glial cell strain in tissue culture, Science 161, 370–371 (1968).PubMedCrossRefGoogle Scholar
  102. 62.
    R. P. Perry, The nucleolus and the synthesis of ribosomes, in: “Progress in Nucleic Acid Research and Molecular Biology” (J. N. Davidson and W. E. Cohn, eds.), Vol. 6, pp. 219–257, Academic Press, New York (1967).Google Scholar
  103. 63.
    S. C. Bondy and H. Waelsch, Nuclear RNA polymerase in brain and liver, J. Neurochem. 12, 751–756 (1965).PubMedCrossRefGoogle Scholar
  104. 64.
    B. Daneholt and S.-O. Brattgârd, A comparison between RNA metabolism of nerve cells and glia in the hypoglossal nucleus of the rabbit, J. Neurochem. 13, 913–921 (1966).PubMedCrossRefGoogle Scholar
  105. 65.
    S. H. Appel, Turnover of brain messenger RNA, Nature 213, 1253–1254 (1967).CrossRefGoogle Scholar
  106. 66.
    P. Volpe and A. Giuditta, Biosynthesis of RNA in neuron-and glia-enriched fractions, Brain Res. 6, 228–240 (1967).PubMedCrossRefGoogle Scholar
  107. 67.
    H. Hydén and A. Pigon, A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6, 57–72 (1960).PubMedCrossRefGoogle Scholar
  108. 68.
    S.-O. Brattgârd, J.-E. Edström, and H. Hydén, The chemical changes in regenerating neurons, J. Neurochem. 1, 316–325 (1957).PubMedCrossRefGoogle Scholar
  109. 69.
    D. B. Roodyn and D. Wilkie, “The Biogenesis of Mitochondria,” Methuen and Co., London (1968).Google Scholar
  110. 70.
    L. Austin and I. G. Morgan, Incorporation of 14C-labeled leucine into synaptosomes from rat cerebral cortex in vitro, J. Neurochem. 14, 377–387 (1967).PubMedCrossRefGoogle Scholar
  111. 71.
    R. Baldzs and W. A. Cocks, RNA metabolism in subcellular fractions of brain tissue, J. Neurochem. 14, 1035–1055 (1967).CrossRefGoogle Scholar
  112. 72.
    J. H. Sinclair, B. J. Stevens, N. Gross, and M. Rabinowitz, The constant size of circular mitochondrial DNA in several organisms and different organs, Biochim. Biophys. Acta 145, 528–531 (1967).Google Scholar
  113. 73.
    H. G. Du Buy, C. F. T. Mattern, and F. L. Riley, Comparison of the DNA’s obtained from brain nuclei and mitochondria of mice and from the nuclei and kinetoplasts of Leishmania enriettii, Biochim. Biophys. Acta 123, 298–305 (1966).Google Scholar
  114. 74.
    D. G. Humm and J. H. Humm, Hybridization of mitochondrial RNA with mito-chondrial and nuclear DNA in agar, Proc. Natl. Acad. Sci. U.S. 55, 114–119 (1966).CrossRefGoogle Scholar
  115. 75.
    M. E. Pullman and G. Schatz, Mitochondrial oxidations and energy coupling, Ann. Rev. Biochem. 36, 539–610 (1967).PubMedCrossRefGoogle Scholar
  116. 76.
    C. B. Klee and L. Sokoloff, Amino acid incorporation into proteolipid of myelin in vitro, Proc. Natl. Acad. Sci. U.S. 53, 1014–1021 (1965).CrossRefGoogle Scholar
  117. 77.
    H. S. Bachelard, Amino acid incorporation into the protein of mitochondrial preparations from cerebral cortex and spinal cord, Biochem. J. 100, 131–137 (1966).Google Scholar
  118. 78.
    L. C. Mokrasch, Incorporation of [14C]amino acids into the proteolipid of sub-cellular preparations of rat brain in vitro, J. Neurochem. 13, 49–58 (1966).CrossRefGoogle Scholar
  119. 79.
    I. G. Morgan and L. Austin, Synaptosomal protein synthesis in a cell-free system, J. Neurochem. 15, 41–51 (1968).PubMedCrossRefGoogle Scholar
  120. 80.
    M. K. Gordon, K. G. Bench, G. G. Deanin, and M. W. Gordon, Histochemical and biochemical study of synaptic lysosomes, Nature 217, 523–527 (1968).PubMedCrossRefGoogle Scholar
  121. 81.
    S. H. Barondes, On the site of synthesis of the mitochondrial protein of nerve endings, J Neurochem. 13, 721–727 (1966).PubMedCrossRefGoogle Scholar
  122. 82.
    S. H. Barondes, Further studies of the transport of protein to nerve endings, J. Neurochem. 15, 343–350 (1968).PubMedCrossRefGoogle Scholar
  123. 83.
    K. von Hungen, H. R. Mahler, and W. J. Moore, Turnover of protein and ribonucleic acid in synaptic subcellular fractions from rat brain, J. Biol. Chem. 243, 1415–1423 (1968).Google Scholar
  124. 84.
    F. E. Samson, Jr., W. M. Balfour, and R. J. Jacobs, Mitochondrial changes in developing rat brain, Am. J. Physiol. 199, 693–696 (1960).PubMedGoogle Scholar
  125. 85.
    L. C. Mokrasch and P. Manner, Incorporation of ‘4C-amino acids and [14C]-palmitate into proteolipids of rat brains in vitro, J. Neurochem. 10, 541–547 (1963).CrossRefGoogle Scholar
  126. 86.
    A. J. Tolani and L. C. Mokrasch, Incorporation of 19C-amino acids into proteolipid protein of subcellular fractions from rat brain, heart and liver, Life Sciences 6, 1771–1774 (1967).PubMedCrossRefGoogle Scholar
  127. 87.
    H. Koenig, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4, 785–792 (1958).Google Scholar
  128. 88.
    J. Folch-Pi, Proteolipids, neurokeratin, neurosclerin and copper proteins, in: “Protides of the Biological Fluids” (H. Peeters, ed.), Vol. 13, pp. 21–34, Elsevier Publishing Company, Amsterdam (1966).Google Scholar
  129. 89.
    F. Wolfgram, The amino acid compositions of some non-neural proteolipid proteins, Biochim. Biophys. Acta 147, 383–385 (1967).PubMedGoogle Scholar
  130. 90.
    D. S. Beattie, R. E. Basford, and S. B. Koritz, The turnover of the protein corn-. ponents of mitochondria from rat liver, kidney, and brain, J. Biol. Chem. 242, 4584–4586 (1967).PubMedGoogle Scholar
  131. 91.
    C. B. Klee and L. Sokoloff, Mitochondrial differences in mature and immature brain. Influence on rate of amino acid incorporation into protein and responses to thyroxine, J. Neurochem. 11, 709–716 (1964).PubMedCrossRefGoogle Scholar
  132. 92.
    P. Weiss and H. B. Hiscoe, Experiments on the mechanism of nerve growth, J. Exp. Zool. 107, 315–396 (1948).PubMedCrossRefGoogle Scholar
  133. 93.
    E. Koenig, Synthetic mechanisms in the axon—I. Local axonal synthesis of acetylcholinesterase, J. Neurochem. 12, 343–355 (1965).PubMedCrossRefGoogle Scholar
  134. 94.
    E. Koenig, Synthetic mechanisms in the axon—IV. In vitro incorporation of [3H]precursors into axonal protein and RNA, J. Neurochem. 14, 437–446 (1967).PubMedCrossRefGoogle Scholar
  135. 95.
    L. Austin, J. J. Bray, and R. J. Young, Transport of proteins and ribonucleic acid along nerve axons, J. Neurochem. 13, 1267–1269 (1966).PubMedCrossRefGoogle Scholar
  136. 96.
    A. Edström, Amino acid incorporation in isolated Mauthner nerve fibre components, J. Neurochem. 13, 315–321 (1966).CrossRefGoogle Scholar
  137. 97.
    Y. Takahashi, M. Nomura, and S. Furusawa, In vitro incorporation of [14C1-amino acids into proteins of peripheral nerve during Wallerian degeneration, J. Neurochem. 7, 97–102 (1961).CrossRefGoogle Scholar
  138. 98.
    A. Edström, Inhibition of protein synthesis in Mauthner nerve fibre components by actinomycin-D, J. Neurochem. 14, 239–243 (1967).PubMedCrossRefGoogle Scholar
  139. 99.
    V. Shapot and H. C. Pitot, Isolation and fractionation of ribonucleic acid from the smooth endoplasmic reticulum of rat liver, Biochim. Biophys. Acta 119, 37–45 (1966).Google Scholar
  140. 100.
    V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirkland, The separation of synaptic vesicles from nerve-ending particles (“synaptosomes”), Biochem. J. 90, 293–303 (1964).PubMedGoogle Scholar
  141. 101.
    P. R. Lewis and C. C. D. Shute, The distribution of cholinesterase in cholinergie neurons demonstrated with the electron microscope, J. Cell Sci. 1, 381–390 (1966).PubMedGoogle Scholar
  142. 102.
    D. H. Clouet and H. Waelsch, Amino acid and protein metabolism of the brain—VIII. The recovery of cholinesterase in the nervous system of the frog after inhibition, J. Neurochem. 8, 201–215 (1961).PubMedCrossRefGoogle Scholar
  143. 103.
    E. Koenig and G. B. Koelle, Mode of regeneration of acetylcholinesterase in cholinergie neurons following irreversible inactivation, J. Neurochem. 8, 169–188 (1961).PubMedCrossRefGoogle Scholar
  144. 104.
    E. Koenig, Synthetic mechanisms in the axon—III. Stimulation of acetylcholinesterase synthesis by actinomycin-D in the hypoglossal nerve, J. Neurochem. 14, 429–435 (1967).PubMedCrossRefGoogle Scholar
  145. 105.
    B. C. Goodwin and I. W. Sizer, Histone regulation of lactic dehydrogenase in embryonic chick brain tissue, Science 148, 242–244 (1965).PubMedCrossRefGoogle Scholar
  146. 106.
    D. S. Beattie, R. E. Basford, and S. B. Koritz, The inner membrane as the site of the in vitro incorporation of L-[14C]leucine into mitochondrial protein, Biochemistry 6, 3099–3106 (1967).PubMedCrossRefGoogle Scholar
  147. 107.
    C. Vesco and A. Giuditta, Disaggregation of brain polysomes induced by electroconvulsive treatment, J. Neurochem. 15, 81–85 (1968).PubMedCrossRefGoogle Scholar
  148. 108.
    S. H. Appel, W. Davis, and S. Scott, Brain polysomes: Response to environmental stimulation, Science 157, 836–838 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Sidney Roberts
    • 1
  • Claire E. Zomzely
    • 1
  • S. C. Bondy
    • 1
  1. 1.Department of Biological Chemistry School of Medicine and the Brain Research InstituteUniversity of California Center for the Health SciencesLos AngelesUSA

Personalised recommendations