Biochemical and Genetic Studies of the Synthesis and Degradation of RuBP Carboxylase

  • Ellen Simpson
Part of the Basic Life Sciences book series (BLSC, volume 11)


The role of ribulose bisphosphate (RuBP) carboxylase in photosynthesis and photorespiration, its structure, and the genetics of subunit transmission have been well studied (1). Other aspects of the biology of RuBP carboxylase have received less attention; in particular, the timing and the genetic regulation of its synthesis and degradation require further study. Knowledge of the timing and the effects on it of environmental and developmental cues will contribute to an understanding of whether the amount of RuBP carboxylase protein is a limiting factor in photosynthesis. Examination of the large and small subunits separately should clarify whether the small subunit is necessary to induce synthesis of the large one. The orderly progression of plastid development (2) and of leaf senescence (3) indicates that these are well regulated processes. Nonetheless the genetic regulation of RuBP carboxylase synthesis and degradation must be characterized and described before these developmental processes can be fully understood.


Genetic Regulation Acetic Anhydride Ribulose Bisphosphate Label Amino Acid Corn Leaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kung, S. D., Annu. Rev. Plant Physiol. 28, 401 (1977).CrossRefGoogle Scholar
  2. 2.
    Hoober, J.K., in Genetics and Biogenesis of Chloroplasts and Mitochondria, pp. 87–94, T. Bucher et al., Editors, North-Holland, New York, 1976.Google Scholar
  3. 3.
    Choe, H. T. and Thimann, K. V., Planta 135, 101–7 (1977).CrossRefGoogle Scholar
  4. 4.
    Peterson, L. W., Kleinkopf, D. E., and Huffaker, R. C., Plant Physiol. 51, 1042 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    Kannangara, C. C. and Woolhouse, H. W., New Phytol. 67, 53342 (1968).CrossRefGoogle Scholar
  6. 6.
    Brady, C. J., Scott, N., and Munns, R., Royal Soc. New Zealand Bull. 12, 403 (1974).Google Scholar
  7. 7.
    Peterson, L. W. and Huffaker, R. C, Plant Physiol. 55, 1009–15 (1975).CrossRefGoogle Scholar
  8. 8.
    Hall, N., Keys, A., and Merrett, M., J. Exp. Bot. 29, 31–7 (1978).CrossRefGoogle Scholar
  9. 9.
    Callow, J. A., New Phytol. 73, 13–20 (1974).CrossRefGoogle Scholar
  10. 10.
    Arias, I., Doule, D., and Schimke, R., J. Biol. Chem. 244, 3303 (1969).PubMedGoogle Scholar
  11. 11.
    Hutterman, A. and Wendleberger, G., Methods Cell Biol. 13, Ch. 8, (1976).Google Scholar
  12. 12.
    Zielke, H. R. and Filner, P., J. Biol. Chem. 246, 1772 (1971).PubMedGoogle Scholar
  13. 13.
    Humphrey, T. J. and Davies, D., Biochem. J. 156, 561 (1976).PubMedGoogle Scholar
  14. 14.
    Roberts, R. M. and Yuan, B., O. Ching, Arch. Biochem. Biophys. 171, 226 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    Goldberg, A.L., in Intracellular Protein Catabolism, Vol. 2 pp. 49–66, V. Turk and N. Marks, Editors, Plenum Press, New York, 1977.CrossRefGoogle Scholar
  16. 16.
    Andrews, T. J., Badger, M. R., and Lorimer, G. H., Arch. Biochem. Biophys. 171, 93 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    Schloss, J. V. and Hartman, F. C., Biochem. Biophys. Res. Commun. 75, 320 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    Laber, L. J., Latzko, E., and Gibbs, M., J. Biol. Chem. 249, 3436 (1974).PubMedGoogle Scholar
  19. 19.
    Miles, D., Stadler Genet. Symp. 7, 135–54 (1975).Google Scholar
  20. 20.
    Smillie, R., Nielsen, N., Henigsen, K., and von Wettstein, D., Aust. J. Plant Physiol. 4, 415 (1977).CrossRefGoogle Scholar
  21. 21.
    Levine, R. P., Annu. Rev. Genet. 4, 397 (1970).PubMedCrossRefGoogle Scholar
  22. 22.
    Bradbeer, J.W., in Biosynthesis and Its Control in Plants, p. 279, B. V. Milborrow, Editor, Academic Press, New York, 1973.Google Scholar
  23. 23.
    Feierabend, J. and Pirson, A., Z. Pflanzenphysiol. 55, 235 (1966).Google Scholar
  24. 24.
    Criddle, R. S., Dau, B., Kleinkopf, G. E., and Huffaker, R. C., Biochem. Biophys. Res. Commun. 41, 62 (1970).CrossRefGoogle Scholar
  25. 25.
    Fox, S. and Naylor, A., Plant Physiol. Suppl. 57, 4 (abstr. 19) (1976).Google Scholar
  26. 26.
    Frosch, S., Bergfeld, R., and Mohr, H., Planta. 133, 53 (1976).CrossRefGoogle Scholar
  27. 27.
    Chollet, R. and Paolillo, D. R., Z. Pflanzenphysiol. 68, 30 (1972).Google Scholar
  28. 28.
    Chollet, R. and Ogren, W. L., Z. Pflanzenphysiol. 68, 45 (1972).Google Scholar
  29. 29.
    Neuffer, M. G., Sheridan, W. F., and Bendbow, E., Maize Genet. Coop. Newslett. 52, 84–8 (1978).Google Scholar
  30. 30.
    Shumway, L. K. and Weier, T. E., Am. J. Bot. 54, 773 (1967).CrossRefGoogle Scholar
  31. 31.
    Mascia, P. and Robertson, D., Maize Genet. Coop. Newslett. 51, 38 (1977).Google Scholar
  32. 32.
    Stroup, D., J. Hered. 61, 139 (1970).Google Scholar
  33. 33.
    Means, G. E. and Feeney, R. E., Chemical Modification of Proteins, p. 203, Holden-Day, San Francisco, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Ellen Simpson
    • 1
  1. 1.Biology DepartmentWashington UniversitySt. LouisUSA

Personalised recommendations