Advertisement

Regulation of Ribulose 1,5-Bisphosphate Carboxylase in the Chloroplast

  • Richard G. Jensen
  • Richard C. SicherJr.
  • James T. Bahr
Part of the Basic Life Sciences book series (BLSC, volume 11)

Abstract

Carbon dioxide is incorporated by the action of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase) during photosynthesis. Curves relating photosynthesis rates to illuminance for many species, especially C3 plants, show that the photosynthesis rate approaches a limiting value asymptotically at high radiation (1, 2). CO2 availability becomes a primary limiting factor to photosynthetic CO2 assimilation under these conditions (2). However, more capacity for CO2 assimilation per leaf area can be induced. When the photosynthetic product demand was increased by partial defoliation or shading of plant leaves, increased photosynthesis rates were observed within days (3, 4). Increased levels of RuBP carboxylase were noted (4), suggesting that under saturated light conditions in the field the photosynthesis rates were limited by the activity of the carboxylase.

Keywords

Calvin Cycle Carboxylase Activity Intact Chloroplast Chloroplast Stroma RuBP Carboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, C. C. Jr., Annu. Rev. Plant Physiol. 24, 253–86 (1973).CrossRefGoogle Scholar
  2. 2.
    Gaastra, P., Meded. Landbouwhogesch. Wageningen 59, 1–68 (1959).Google Scholar
  3. 3.
    Thorne, J. H. and Koller, H. R., Plant Physiol. 54, 201–7 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    Wareing, P. F., Khalifa, M. M., and Treharne, K. J., Nature London 220, 453–7 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    Bahr, J. T. and Jensen, R. G., Arch. Biochem. Biophys. 185, 39–48 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    Jensen, R. G. and Bahr, J. T., Annu. Rev. Plant Physiol. 28, 379–400 (1977).CrossRefGoogle Scholar
  7. 7.
    Kung, S. D., Science 191, 429–34 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    McFadden, B. A. and Tabita, F. R., Biosystems 6, 93–112 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    Nishimura, M. and Akazawa, T., Biochem. Biophys. Res. Commun. 54, 842–8 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    Nishimura, M., Takabe, T., Sugiyama, T., and Akazawa, T., J. Biochem. 74, 945–54 (1973).PubMedGoogle Scholar
  11. 11.
    Baker, T. S., Eisenberg, D., and Eiserling, F. A., Science 196, 293–5 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    Kawashima, N. and Wildman, S. G., Biochem. Biophys. Res. Commun. 41, 1463–8 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    Rutner, A.C., Biochem. Biophys. Res. Commun. 39, 923–9 (1970)PubMedCrossRefGoogle Scholar
  14. 14.
    Siegel, M. I. and Lane, M. D., J. Biol. Chem. 248, 5486–98 (1973).PubMedGoogle Scholar
  15. 15.
    Wishnick, M., Lane, M. D., and Scrutton, M. C., J. Biol. Chem. 245, 4939–47 (1970).PubMedGoogle Scholar
  16. 16.
    Badger, M. R. and Andrews, T. J., Biochem. Biophys. Res. Commun. 60, 204–10 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    Bahr, J. T. and Jensen, R. G., Plant Physiol. 53, 39–44 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    Lilley, R. M. and Walker, D. A., Plant Physiol. 54, 1087–92 (1975).CrossRefGoogle Scholar
  19. 19.
    Walker, D. A., New Phytol. 72, 209–35 (1973).CrossRefGoogle Scholar
  20. 20.
    Siegel, M. I., Wishnick, M., and Lane, M.D., in The Enzymes, pp. 169–92, P. D. Boyer, Editor, Academic Press, New York, 1972.Google Scholar
  21. 21.
    Kawashima, N. and Wildman, S. G., Annu. Rev. Plant Physiol. 21, 325–58 (1970).CrossRefGoogle Scholar
  22. 22.
    Bahr, J. T. and Jensen, R. G., Arch. Biochem. Biophys. 164, 408–13 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    Jensen, R. G. and Bassham, J. A., Proc. Natl. Acad. Sei. USA 56, 1095–101 (1966).CrossRefGoogle Scholar
  24. 24.
    Krause, G. H., Thorne, S. W., and Lorimer, G. H., Arch. Biochem. Biophys. 183, 471–9 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    Bowes, G. and Ogren, W. L., J. Biol. Chem. 247, 2171–6 (1972).PubMedGoogle Scholar
  26. 26.
    Laing, W. A., Ogren, W. L., and Hageman, R. H., Plant Physiol. 54, 678–85 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    Badger, M. R. and Lorimer, G. H., Arch. Biochem. Biophys. 175, 723–9 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    Chollet, R. and Anderson, L. L., Arch. Biochem. Biophys. 176, 344–51 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    Ryan, F. J., Barker, R., and Tolbert, N. E., Biochem. Biophys. Res. Commun. 65, 39–46 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    Andrews, T. J., Badger, M. R., and Lorimer, G. H., Arch. Biochem. Biophys. 171, 93–103 (1975).PubMedCrossRefGoogle Scholar
  31. 31.
    Bowes, G., Ogren, W. L., and Hageman, R. H., Plant Physiol. 56, 630–3 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 54, 556–9 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 55, 720–6 (1975).PubMedCrossRefGoogle Scholar
  34. 34.
    Laing, W. A., Ogren, W. L., and Hageman, R. H., Biochemistry 14, 2269–75 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    Lorimer, G. H., Badger, M. R., and Andrews, T. J., Biochemistry 15, 529–36 (1976).PubMedCrossRefGoogle Scholar
  36. 36.
    Laing, W. A. and Christeller, J. T., Biochem. J. 159, 563–70 (1976).PubMedGoogle Scholar
  37. 37.
    Pon, N. G., Rabin, B. R., and Calvin, M., Biochem. Z. 338, 7–19 (1963).PubMedGoogle Scholar
  38. 38.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 52, 373–9 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    Werden, K., Heidt, H. W., and Milovancev, M., Biochim. Biophys. Acta 396, 276–92 (1975).CrossRefGoogle Scholar
  40. 40.
    Portis, A. R. Jr. and Heidt, H. W., Biochim. Biophys. Acta 449, 434–46 (1976)PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen, R. G. and Bassham, J. A., Biochim. Biophys. Acta 153, 227–34 (1968).PubMedCrossRefGoogle Scholar
  42. 42.
    Pedersen, T. A., Kirk, M., and Bassham, J. A., Physiol. Plant. 19, 219–31 (1966).CrossRefGoogle Scholar
  43. 43.
    Jensen, R. G. and Bassham, J. A., Biochim. Biophys 219–26 (1968).Google Scholar
  44. 44.
    Stankovic, Z. S. and Walker, D. A., Plant Physiol. 59, 42832 (1977).CrossRefGoogle Scholar
  45. 45.
    Walker, D.A., New Phytol. 12, 209–35 (1973).CrossRefGoogle Scholar
  46. 46.
    Slabas, A. R. and Walker, D. A., Biochem. J. 153, 613–19 (1976)PubMedGoogle Scholar
  47. 47.
    Werdan, K., Heidt, H. W., and Milovancev, M., Biochim. Biophys. Acta 396, 276–92 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    Latzko, E., Garnier, R. V., Gibbs, M., Biochem. Biophys. Res. Commun. J39, 1140–4 (1970).CrossRefGoogle Scholar
  49. 49.
    Avron, M. and Gibbs, M., Plant Physiol. 53, 136–9 (1974).PubMedCrossRefGoogle Scholar
  50. 50.
    Anderson, L.E., in Proc. 3rd Int. Congr. Photosynth., pp. 1393–405, M. Avron, Editor, Elsevier, Amsterdam, 1974.Google Scholar
  51. 51.
    Buchanan, B. B., Schurmann, P., and Kalberer, P. P., J. Biol. Chem. 246, 5952–9 (1971).PubMedGoogle Scholar
  52. 52.
    Schurmann, P. and Buchanan, B. B., Biochim. Biophys. Acta 376, 189–92 (1975).PubMedCrossRefGoogle Scholar
  53. 53.
    Ziegler, H. and Ziegler, I., Planta 65, 369–80 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Richard G. Jensen
    • 1
  • Richard C. SicherJr.
    • 1
  • James T. Bahr
    • 2
  1. 1.Departments of Biochemistry and Plant SciencesUniversity of ArizonaTucsonUSA
  2. 2.Mobil Chemical CompanyEdisonUSA

Personalised recommendations