Advertisement

In Vivo Control Mechanism of the Carboxylation Reaction

  • James A. Bassham
  • Sheryl Krohne
  • Klaus Lendzian
Part of the Basic Life Sciences book series (BLSC, volume 11)

Abstract

It is hardly surprising that both the synthesis and the activity of the enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase are highly regulated. This most abundant enzyme on earth catalyzes the entry of CO2 into the reductive pentose phosphate pathway (Calvin cycle) (1), the pathway leading to the reduction of CO2 to sugar phosphates in all green plants (2), including those with a prelimin ary C4 cycle (3) for CO2 accumulation. Such first reactions are often the sites of important metabolic regulation. The carboxylation reaction is one of four steps in the Calvin cycle unique to that cycle and not found in the oxidative pentose phosphate cycle (the other such reactions are the ones converting fructose and sedo heptulose bisphosphates to their respective monophosphates and the reaction converting ribulose 5-phosphate to RuBP) (Figure 1). All four of these reactions are inactivated or are less active in the dark, when the oxidative pentose phosphate cycle and the glycolytic pathway operate. The inactivation in the dark of these four reactions unique to the reductive cycle is required to prevent the oper ation of futile cycles.

Keywords

Calvin Cycle Spinach Chloroplast Reconstituted System Carboxylation Reaction RuBP Carboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassham, J.A., Benson, A. A., Day, L. D., Harris, A. Z., Wilson, A.T. and Calvin, M., J. Am. Chem. Soc. 76, 1760–70 (1953).CrossRefGoogle Scholar
  2. 2.
    Norris, L., Norris, R. E., and Calvin, M., J. Exp. Bot. 6, 64–74 (1955).CrossRefGoogle Scholar
  3. 3.
    Hatch, M. D. and Slack, C. R., Biochem. J. 101, 103–11 (1966).PubMedGoogle Scholar
  4. 4.
    Bassham, J. A. and Kirk, M. R., Biochem. Biophys. Res. Commun. 9, 376–80 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    Bowes, G., Ogren, W. L., and Hageman, R. H., Biochem. Biophys. Res. Commun. 45, 716–22 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Bowes, G., Ogren, W. L., and Hageman, R. H., Plant Physiol. 56, 630–3 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    Lorimer, G. H., Andrews, T. J., and Tolbert, N. E., Biochemistry 12, 18–23 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    Richardson, K. E. and Tolbert, N. E., J. Biol. Chem. 236, 1285–90 (1961).PubMedGoogle Scholar
  9. 9.
    Bassham, J. A. and Krause, G. H., Biochim. Biophys. Acta 189, 207–21 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    Paul J. S. and Bassham, J.A., Plant Physiol. 60, 775–8 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    Pedersen, T. A., Kirk, M., and Bassham, J. A., Physiol. Plantarum 19, 219–31 (1966).CrossRefGoogle Scholar
  12. 12.
    Chu, D. K., Biochemical and Physical Studies of Ribulose 1,5-Disphosphate Carboxylase From Spinach Leaves, Ph.D. Thesis, University of California, Berkeley, 1974.Google Scholar
  13. 13.
    Bassham, J. A. and Kirk, M., in Comparative Biochemistry and Biophysics of Photosynthesis, pp. 365–78, K. Shibata et al., Editors, University of Tokyo Press, 1968.Google Scholar
  14. 14.
    Jensen, R. G. and Bassham, J. A., Biochim. Biophys, Acta 153, 227–34 (1968).CrossRefGoogle Scholar
  15. 15.
    Heber, V. W. and Santarius, K. A., Z. Naturforsch. 25b, 718–28 (1970).Google Scholar
  16. 16.
    Heidt, H. W., Sauer, F., and Rapley, F., in Proc. 2nd. Int. Congr. Photosynth. Res., Stresa, 1971, pp. 1345–55, G. Forti et al., Editors, Junk, The Hague, 1972.Google Scholar
  17. 17.
    Stokes, D. M. and Walker, D.A., in Photosynthesis and Respiration, pp. 226–31, M. D. Hatch et al., Editors, Wiley, New York, 1971.Google Scholar
  18. 18.
    Pon, N. G., Rabin, B. R., and Calvin, M., Biochem. Z. 338, 7–9 (1963).PubMedGoogle Scholar
  19. 19.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 52, 373–9 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 54, 556–9 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 55, 720–6 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    Bassham, J. A., Sharp, P., and Morris, I., Biochim. Biophys. Acta 153, 901–2 (1968).CrossRefGoogle Scholar
  23. 23.
    Sugiyama, T., Nakayama, N., and Akazawa, T., Biochem. Biophys. Res. Commun. 30, 118–23 (1968).PubMedCrossRefGoogle Scholar
  24. 24.
    Lorimer, G. H., Badger, M. R., and Andrews, T. J., Biochemistry 15, 529–36 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    Vaklinova, S. and Popova, L., pp. 1869–74 in ref. 16.Google Scholar
  26. 26.
    Bahr, J. T. and Jensen, R. G., Plant Physiol. 53, 39–44 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    Lilley, R. McC. and Walker, D., Plant Physiol. 55, 1087–92 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    Bassham, J. A., Levine, G., and Forger, J. III, Plant Sei. Lett. 2, 15–21 (1974).CrossRefGoogle Scholar
  29. 29.
    29Bassham, J. A. and Kirk, M. R., Biochim. Biophys. Acta 43, 447–64 (1960).PubMedCrossRefGoogle Scholar
  30. 30.
    30Jensen, R. G. and Bassham, J. A., Proc. Natl. Acad. Sei. USA 56, 1095–101 (1966).CrossRefGoogle Scholar
  31. 31.
    Platt, S. G., Plaut, Z., and Bassham, J. A., Plant Physiol. 57, 69–73 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    Bassham, J. A. and Kirk, M., Plant Physiol. 52, 407–41 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • James A. Bassham
    • 1
  • Sheryl Krohne
    • 1
  • Klaus Lendzian
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations