Photorespiration and the Effect of Oxygen on Photosynthesis

  • David T. Canvin
Part of the Basic Life Sciences book series (BLSC, volume 11)


Photorespiration is the light-dependent, oxygen-sensitive CO2 evolution from green leaves that originates from the metabolism of compounds in the glycolate pathway. It has been termed “an inevitable consequence of the existence of atmospheric oxygen” (1) and has been attributed to the ability of ribulose bisphosphate carboxylase to act also as an oxygenase catalyzing the reaction of oxygen with ribulose bisphosphate (RuBP) to yield phosphoglycolate (2), the precursor of the substrate for the glycolate pathway. In this reaction, oxygen not only produces the substrate for photorespiration but also competitively prevents the fixation of CO2 (3, 4). It has been known for some time that the inhibition of photosynthesis by oxygen is comprised of two components, inhibition of true photosynthesis and stimulation of photorespiration (5, 6). With the discovery of the oxygenase activity of RuBP carboxylase, both these components were attributed to the effect of oxygen on the enzyme (4, 7), and the joint action of oxygen and CO2 on the enzyme was proposed to be responsible for the regulation of soybean net photosynthesis (8). The oxygen concentration around a leaf—and in it, as the oxygen concentration is similar, (9)—can be quickly changed; and, if oxygen acts only on the oxygenase, one might expect a change in oxygen concentration to be accompanied by a corresponding rapid change in CO2 fixation to a new steady rate.


Oxygen Concentration Final Rate Photosynthesis Rate Stomatal Aperture Steady Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorimer, G. H. and Andrews, T. J., Nature London 243, 359–60 (1973).CrossRefGoogle Scholar
  2. 2.
    Bowes, G., Ogren, W. L., and Hageman, R. H., Biochem. Biophys. Res. Commun. 45, 716–22 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    Ogren, W. L. and Bowes, G., Nature New Biol. 230, 159–60 (1971).PubMedGoogle Scholar
  4. 4.
    Bowes, G. and Ogren, W. L., J. Biol. Chem. 247, 2171–6 (1972).PubMedGoogle Scholar
  5. 5.
    Forrester, M. L., Krotkov, G., and Nelson, C. D., Plant Physiol, 41, 422–7 (1966).PubMedCrossRefGoogle Scholar
  6. 6.
    D’Aoust, A. L. and Canvin, D. T. Can. J. Bot. 51, 457–64 (1973).CrossRefGoogle Scholar
  7. 7.
    Chollet, R. and Ogren, W. L., Bot. Rev. 41, 137–79 (1975).CrossRefGoogle Scholar
  8. 8.
    Laing, W. A., Ogren, W. L., and Hageman, R. H., Plant Physiol. 54, 678–86 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    Samish, Y. B., Photosynthetica 9, 372–5 (1975).Google Scholar
  10. 10.
    Viil, J., Laisk, A., Oja, V., and Pyarnik, T., Dokl, Akad. Nauk SSSR (Engl, transl. of bot. sei. sect.) 204, 86–8 (1972).Google Scholar
  11. 11.
    Jolliffe, P. A. and Tregunna, E. B., Can. J. Bot. 51, 841–53 (1973).CrossRefGoogle Scholar
  12. 12.
    Chmora, S. N., Slobodskaya, G. A., and Nichiporovish, A. A., Soviet Plant Physiol. Engl. Transl. 23, 745–50 (1976).Google Scholar
  13. 13.
    Viil, J., Laisk, A., Oja, V., and Pyarnik, T., Photosynthetica 11, 251–0 (1977).Google Scholar
  14. 14.
    Lloyd, N. D. H. and Canvin, D. T., Can. J. Bot. 55, 3006–12 (1977).CrossRefGoogle Scholar
  15. 15.
    D’Aoust, A. L. and Canvin, D. T., Photosynthetica 6, 150–7 (1972)Google Scholar
  16. 16.
    Hewitt, E. J., Sand and Water Culture Methods Used in the Study of Plant Nutrition, Commonwealth Agriculture Bureau, Farnham Royal, Bucks. England, 1966.Google Scholar
  17. 17.
    Ludwig, L. J. and Canvin, D. T., Can. J. Bot. 49, 1299–319 (1971)CrossRefGoogle Scholar
  18. 18.
    McCashin, B. G., M.Sc. Thesis, Queen’s University, Kingston, Ontario, 1978.Google Scholar
  19. 19.
    Bate, G. C, DfAoust, A. L., and Canvin, D. T., Plant. Physiol. 44, 1122–6 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    D’Aoust, A. L., Bate, G. C., and Canvin, D. T., Can. J. Bot. 49, 317–19 (1971).CrossRefGoogle Scholar
  21. 21.
    Gauhl, E. and Bjorkman, O., Planta 88, 187–91 (1969).CrossRefGoogle Scholar
  22. 22.
    Bull, T. A., Crop Sei. 9, 726–9 (1969).CrossRefGoogle Scholar
  23. 23.
    Lloyd, N. D. H., Canvin, D. T., and Culver, D. A., Plant Physiol. 59, 936–40 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    Meidner, H. and Mansfield, T. A., Physiology of Stomata, McGraw-Hill, New York, 1968.Google Scholar
  25. 25.
    Ludwig, L. J. and Canvin, D. T., Plant Physiol. 48, 712–19 (1971)PubMedCrossRefGoogle Scholar
  26. 26.
    Heber, U. and French, C. S., Planta 79, 99–112 (1968).CrossRefGoogle Scholar
  27. 27.
    Huber, S. and Edwards, G., Biochem. Biophys. Res. Commun, 67, 28–35 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • David T. Canvin
    • 1
  1. 1.Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations