Regulation of Photosynthetic Carbon Assimilation

  • D. A. Walker
  • S. P. Robinson
Part of the Basic Life Sciences book series (BLSC, volume 11)


When whole tissues or isolated chloroplasts are brightly illuminated they do not immediately commence to assimilate carbon at maximal rates. Instead there is an initial lag or induction period which may persist for several minutes (1). This is perhaps the best known and most readily observed example of photosynthetic regulation. Clearly the chloroplasts are potentially capable of rapid photosynthesis because they soon begin to evolve O2 and fix CO2 at high rates. Equally clearly this potential ability is slowed or regulated during the first few minutes of illumination. What is the nature and function of this regulation? Osterhout and Haas (2), who first observed induction at Woods Hole in 1918, suggested two possible causes. Either the lag represented a period during which substrates were built up to the level required for full activity or else the catalysts concerned might be activated in the light. Sixty years later there is little that can be added to these statements in principle, except of course the inevitable notion that it might be both. This article deals with these possibilities in regard to ribulose bisphosphate (RuBP) carboxylase and in particular to the role of ortho-phosphate in metabolic regulation.


Induction Period Oxygen Evolution Light Activation Spinach Chloroplast Sugar Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, D.A., in The Intact Chloroplast, pp. 235–78, J. Barber, Editor, Elsevier, Amsterdam, 1976.Google Scholar
  2. 2.
    Osterhout, W. J. V. and Haas, A. R. C, J. Gen. Physiol. 1, 1–16 (1918).PubMedCrossRefGoogle Scholar
  3. 3.
    Bassham, J. A. and Jensen, R.G., in Harvesting the Sun, pp. 79–110, A. SanPietro et al., Editors, Academic Press, New York, 1967.Google Scholar
  4. 4.
    Walker, D. A. and Lilley, R. McC, in Proc. 50th Annu. Meet. Soc. Exp. Biol., Cambridge, pp. 189–98, 1974.Google Scholar
  5. 5.
    Lilley, R. McC. and Walker, D. A., Plant Physiol. 55, 1087–92 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    Bahr, J. T. and Jensen, R. G., Arch. Biochem. Biophys. 185, 39–48 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    Lorimer, G. H., Badger, M. S., and Andrews, T. J., Biochemistry 15, 529–36 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    Walker, D. A., Curr. Top. Cell. Regul. 11, 203–41 (1976).PubMedGoogle Scholar
  9. 9.
    Portis, A. R. Jr. and Heidt, H. W., Biochim. Biophys. Acta 449, 434–46 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    Hind, G., Nakatani, H. Y., and Izawa, S., Proc. Natl. Acad. Sei. USA 71, 1484–8 (1974).CrossRefGoogle Scholar
  11. 11.
    Paulson, J. M. and Lane, M. D., Biochemistry 5, 2350–7 (1966).CrossRefGoogle Scholar
  12. 12.
    McNeil, P. H., Unpublished.Google Scholar
  13. 13.
    Fliege, R., Flügge, U-I., Werdan, K., and Heidt, H. W., Biochim. Biophys. Acta, in press (1978).Google Scholar
  14. 14.
    Lilley, R. McC. and Walker, D. A., Biochim, Biophys. Acta 386, 226–9 (1974).Google Scholar
  15. 15.
    Lorimer, G. H. et al., See paper in this Symposium.Google Scholar
  16. 16.
    Lilley, R. McC., Chon, C. J., Mosbach, A., and Heidt, H. W., Biochim. Biophys. Acta 460, 259–72 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    Walker, D. A. and Herold, A., Plant Cell Physiol. Special Issue, 295–310 (1977).Google Scholar
  18. 18.
    Walker, D.A., in Proc. NATO Adv. Study Inst. Aberystwyth, 1965, Vol. 2, pp. 53–69, T. W. Goodwin, Editor, Academic Press, New York, 1966.Google Scholar
  19. 19.
    Cockburn, W., Baldry, C. W., and Walker, D. A., Biochim. Biophys. Acta 131, 594–6 (1967).PubMedCrossRefGoogle Scholar
  20. 20.
    Hall, D. O., pp. 135–70 in ref. 1.Google Scholar
  21. 21.
    Robinson, S. P. and Wiskich, J. T., Arch. Biochem. Biophys. 184, 546–54 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    Robinson, S. P. and Wiskich, J. T., Plant Physiol. 59, 422–7 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    Walker, D. A. and Crofts, A. R., Annu. Rev. Biochem. 39, 386–428 (1970).CrossRefGoogle Scholar
  24. 24.
    Slabas, A. R. and Walker, D. A., Biochem. J. 154, 185–92 (1976).PubMedGoogle Scholar
  25. 25.
    Slabas, A. R. and Walker, D. A., Biochim. Biophys. Acta 430, 154–64 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    Cockburn, W., Walker, D. A., and Baldry, C. W., Biochem. J. 107, 89–95 (1968).PubMedGoogle Scholar
  27. 27.
    Cockburn, W., Baldry, C. W., and Walker, D. A., Biochim. Biophys. Acta 143, 614–24 (1967).PubMedCrossRefGoogle Scholar
  28. 28.
    Priess, J. and Kosuge, T., Annu. Rev. Plant Physiol. 21, 433–66 (1970).CrossRefGoogle Scholar
  29. 29.
    Heidt, H. W., Chon, C. J., Maronde, D., Herold, A., Stankovic, Z. S., Walker, D. A., Kraminer, A., Kirk, M. A., and Heber, U., Plant Physiol. 59, 1146–55 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • D. A. Walker
    • 1
  • S. P. Robinson
    • 1
  1. 1.Department of BotanyUniversity of SheffieldSheffieldEngland

Personalised recommendations