Advertisement

The Messenger RNAs and Genes Coding for the Small and Large Subunits of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase in Chlamydomonas reinhardi

  • Stephen H. Howell
  • Stanton Gelvin
Part of the Basic Life Sciences book series (BLSC, volume 11)

Abstract

The synthesis of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase poses some interesting strategical problems for the plant cell. The enzyme is produced in the cell in great abundance and is sequestered within the chloroplast. It is synthesized by two different protein synthesizing systems, one in the cytoplasm and one in the chloroplast (1–4). To produce large quantities of the enzyme, the cell must synthesize this protein preferentially over all others. This presents gene regulation problems that are aggravated by the enzyme being composed of two different subunits, the small subunit (S) and the large subunit (L), which are apparently encoded by two genomes within the cell (5–7) that may employ quite different means for controlling the synthesis of their gene products. In this paper we describe how Chlamydomonas reinhardi deals with these problems of RuBP carboxylase synthesis. We are not asking why certain plant cells such as C. reinhardi produce so much of this enzyme—that has been the subject of other articles in this Symposium We are concerned only with the mechanisms of how this happens.

Keywords

Chloroplast Genome Hybridization Probe Sucrose Density Gradient Lauroyl Sarcosinate RuBP Carboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blair, G. E. and Ellis, R. J., Biochim. Biophys. Acta 319, 223–34 (1973).PubMedGoogle Scholar
  2. 2.
    Gooding, L. R., Roy, H., and Jagendorf, A. T., Arch. Biochem. Biophys. 159, 324–35 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    Gray, J. C. and Kekwick, R.G.O., Eur. J. Biochem. 44, 491–500 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    Roy, H., Patterson, R., and Jagendorf, A. T., Arch. Biochem. Biophys. 172, 64–73 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    Chan, P-H. and Wildman, S. G., Biochim. Biophys. Acta 277, 677–80 (1972).PubMedGoogle Scholar
  6. 6.
    Kawashima, N. and Wildman, S. G., Biochim. Biophys. Acta 262, 42–9 (1972).PubMedGoogle Scholar
  7. 7.
    Kung, S-D., Science 191, 429–34 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    Kolodner, R. D. and Tewari, K. K., Biochim. Biophys. Acta 402, 372–90 (1975).PubMedGoogle Scholar
  9. 9.
    Coen, D. M., Bedbrook, J. R., Bogorad, L., and Rich, A., Proc. Natl. Acad. Sei. USA 74, 5487–91 (1977).CrossRefGoogle Scholar
  10. 10.
    Hartley, M. R., Wheeler, A., and Ellis, R. J., J. Mol. Biol. 91, 67–77 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    Dobberstein, B., Blobel, G., and Chua, N-H., Proc. Natl. Acad. Sei. USA 74, 1082–5 (1977).CrossRefGoogle Scholar
  12. 12.
    Sagher, D., Gosfeld, H., and Edelman, M., Proc. Natl. Acad. Sei. USA 73, 722–6 (1976).CrossRefGoogle Scholar
  13. 13.
    Rosner, A., Reisfeld, A., Jakob, K. M., Gressel, J., and Edelman, M., Colloq. Int. CNRS 261, 561–7 (1977).Google Scholar
  14. 14.
    Howell, S. H., Heizmann, P., Gelvin, S., and Walker, L. L., Plant Physiol. 59, 464–70 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    Gelvin, S. and Howell, S. H., Plant Physiol. 59, 471–7 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    Gelvin, S., Heizmann, P., and Howell, S. H., Proc. Natl. Acad. Sei. USA 74, 3193–7, (1977).CrossRefGoogle Scholar
  17. 17.
    Howell, S. H. and Walker, L. L., Biochim. Biophys. Acta 418, 249–56 (1976).PubMedGoogle Scholar
  18. 18.
    Howell, S. H., Nature London 240, 264–7 (1972).Google Scholar
  19. 19.
    Bastia, D., Chiang, K-S., Swift, H., and Siersma, P., Proc. Natl. Acad. Sei. USA 68, 1157–61 (1971).CrossRefGoogle Scholar
  20. 20.
    Wells, R. and Sager, R., J. Mol. Biol. 58, 611–22 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    Ellis, R. J., Phytochemistry 14, 89–93 (1975).CrossRefGoogle Scholar
  22. 22.
    Iwanji, V., Chua, N-H., and Siekevitz, P., J. Cell Biol. 64, 572–85 (1975).CrossRefGoogle Scholar
  23. 23.
    Baumgartel, D. M. and Howell, S. H., Biochemistry 16, 3182–9 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    Howell, S., Heizmann, P., and Gelvin, S., in Biogenesis of Chloroplasts and Mitochondria, pp. 625–8, T. Bucher et al., Editors, North-Holland, Amsterdam, 1976.Google Scholar
  25. 25.
    Weeks, D. P. and Collis, P. S., Cell 9, 15–27 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    Aviv, H. and Leder, P., Proc. Natl. Acad. Sei. USA 69, 140–812 (1972).CrossRefGoogle Scholar
  27. 27.
    Roman, R., Brooker, J. D., Seal, S., and Marcus, A., Nature London 260, 359–60 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    Howell, S. H., Posakony, J. W., and Hill, K. R., J. Cell. Biol. 72, 223–41 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Stephen H. Howell
    • 1
  • Stanton Gelvin
    • 1
  1. 1.Department of BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations