Advertisement

Mechanism of Action of Ribulose Bisphosphate Carboxylase/Oxygenase

  • M. Daniel Lane
  • Henry M. Miziorko
Part of the Basic Life Sciences book series (BLSC, volume 11)

Abstract

In 1948 Calvin and his colleagues identified D-3-phosphoglycerate as the first stable radioactive product formed during brief exposure of algae to 14CO2 (1). This observation led to the discovery that the carboxylation of ribulose bisphosphate is the first step in the photosynthetic carbon cycle (2). An important advance that opened the way for definitive enzymatic studies was the finding both by Calvin’s (3) and by Horecker’s (4) groups that cell-free extracts of algae or spinach, respectively, carry out a RuBP-dependent carboxyl ation. It is now well established that the enzyme which catalyzes this reaction, i.e., RuBP carboxylase, is present in most if not all plants and photosynthetic microorganisms.

Keywords

Catalytic Oxidation Ribulose Bisphosphate Hydrolytic Cleavage Oxygenase Activity Carboxylation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calvin, M. and Benson, A. A., Science 107, 476 (1948).PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel, M. I., Wishnick, M., and Lane, M. D., in The Enzymes, 3rd ed., Vol. 6, pp. 169–92, Academic Press, New York, 1972.Google Scholar
  3. 3.
    Quayle, J. R., Fuller, R. C., Benson, A. A., and Calvin, M., J. Am. Chem. Soc. 76, 3610 (1954).CrossRefGoogle Scholar
  4. 4.
    Weissbach, A., Smyrniotis, P. Z., and Horecker, B. L., J. Am. Chem. Soc. 76, 3611 (1954).CrossRefGoogle Scholar
  5. 5.
    Paulsen, J. M. and Lane, M. D., Biochemistry 5, 2350–7 (1966).PubMedCrossRefGoogle Scholar
  6. 6.
    Rutner, A. C. and Lane, M. D., Biochem. Biophys. Res. Commun. 28, 531–7 (1967).PubMedCrossRefGoogle Scholar
  7. 7.
    Rutner, A. C, Biochem. Biophys. Res. Commun. 39, 923–9 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    Wishnick, M., Lane, M. D., and Scrutton, M. C, J. Biol. Chem. 245, 4939–47 (1970).PubMedGoogle Scholar
  9. 9.
    Wishnick, M., Lane, M. D., Scrutton, M. C, and Mildvan, A. S., J. Biol. Chem. 244, 5761–3 (1969).PubMedGoogle Scholar
  10. 10.
    Siegel, M. I. and Lane, M. D., Biochem. Biophys. Res. Commun. 48, 508–16 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    Nishimura, M. and Akazawa, T., Biochem. Biophys. Res. Commun. 59, 584–90 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    Chan, P. H., Sakano, K., Singh, S., and Wildman, S. G., Science 176, 1145–6 (1972).PubMedCrossRefGoogle Scholar
  13. 13.
    Baker, T. S., Eisenberg, D., Eiserling, F. A., and Weissman, L., J. Mol. Biol. 91, 391–9 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    Baker, T. S., Eisenberg, D., and Eiserling, F., Science 196, 293–5 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    Baker, T. S., Suh, S. W., and Eisenberg, D., Proc. Natl. Acad. Sei. USA 74, 1037–41 (1977).CrossRefGoogle Scholar
  16. 16.
    Mullhofer, G. and Rose, I. A., J. Biol. Chem. 240, 1341–6 (1965).Google Scholar
  17. 17.
    Bassham, J. A., Adv. Enzymol. 25, 39–117 (1963).PubMedGoogle Scholar
  18. 18.
    Edsall, J. T., CO2: Chemical, Biochemical, and Physiological Aspects, pp. 15–27, NASA Publ. SP-188, 1968.Google Scholar
  19. 19.
    Cooper, T. G., Filmer, D., Wishnick, M., and Lane, M. D., J. Biol. Chem. 244, 1081–3 (1969).PubMedGoogle Scholar
  20. 20.
    Badger, M. R. and Andrews, T. J., Biochem. Biophys. Res. Commun. 60, 204–10 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    Andrews, T. J., Badger, M. R. and Lorimer, G. H., Arch. Biochem. Biophys. 171, 93–103 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    Laing, W. A., Ogren, W. L., and Hageman, R. H., Biochemistry 14, 2269–75 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    Lorimer, G. H., Badger, M. R., and Andrews, T. J., Biochemistry 15, 529–36 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    Laing, W. A. and Christeller, J. T., Biochem. J. 159, 563–70 (1976).PubMedGoogle Scholar
  25. 25.
    Badger, M. R. and Lorimer, G. H., Arch. Biochem. Biophys. 175, 723–9 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    Miziorko, H. M. and Mildvan, A. S., J. Biol. Chem. 249, 274350 (1974).Google Scholar
  27. 27.
    Norton, I. L., Welch, M. H., and Hartman, F. C, J. Biol. Chem. 250, 8062–8 (1975).PubMedGoogle Scholar
  28. 28.
    Mildvan, A. S., Annu. Rev. Biochem. 43, 377–80 (1974).CrossRefGoogle Scholar
  29. 29.
    Krishnaswamy, P. R., Pamiljans, V., and Meister, A., J. Biol. Chem. 237, 2932–40 (1962).Google Scholar
  30. 30.
    Calvin, M., Federation Proc. 13, 697 (1954).Google Scholar
  31. 31.
    Siegel, M. I. and Lane, M. D., J. Biol. Chem. 248, 5486–98 (1973).PubMedGoogle Scholar
  32. 32.
    Andrews, T. J., Lorimer, G. H., and Tolbert, N. E., Biochemistry 12, 11–18 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    Bowes, G. and Ogren, W. L., J. Biol. Chem. 247, 2171–6 (1972).PubMedGoogle Scholar
  34. 34.
    McFadden, B. A., Biochem. Biophys. Res. Commun. 60, 312–17 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    Ryan, F. J. and Tolbert, N. E., J. Biol. Chem. 250, 4234–8 (1975).PubMedGoogle Scholar
  36. 36.
    Lorimer, G. H., Andrews, T. J., and Tolbert, N. E., Biochemistry 12, 18–23 (1973).PubMedCrossRefGoogle Scholar
  37. 37.
    Peisach, J., Aisen, P., and Blumberg, W. E., The Biochemistry of Copper, pp. 339–405, Academic Press, New York, 1966.Google Scholar
  38. 38.
    Chollet, R., Anderson, L. L., and Hovsepian, L. C., Biochem. Biophys. Res. Commun. 64, 97–107 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. Daniel Lane
    • 1
  • Henry M. Miziorko
    • 2
  1. 1.Department of Physiological ChemistryThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of BiochemistryMedical College of WisconsinMilwaukeeUSA

Personalised recommendations