The Activation of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase

  • George H. Lorimer
  • Murray R. Badger
  • Hans W. Heldt
Part of the Basic Life Sciences book series (BLSC, volume 11)


A long-standing and continuing problem concerning ribulose bisphosphate carboxylase/oxygenase is the discrepancy between its activity in vivo and in vitro (1, 2). The apparently low affinity of the enzyme for CO2 was one of the better reasons Warburg had for dismissing the C3 photosynthetic carbon reduction cycle (3). When assayed in vitro with the naturally occurring concentrations of CO2 (10 µ,M) and O2 (250 µM), the purified enzyme is incapable of fixing CO2 for sustained periods (>90 sec) at rates equal to or greater than those of photosynthesis. Similarly, sustained synthesis of phosphoglycolate under natural conditions for >2 to 3 min at rates equal to or greater than the in vivo rates has not yet been observed. Nevertheless, beginning with the observations of Bahr and Jensen (4, 5), some progress towards resolution of these discrepancies has been made, and, provided that both reactions are initiated with fully activated enzyme, adequate rates of carboxylation or oxygenation under natural conditions can be achieved or even exceeded, if only for a minute or two (6–12). Thereafter, progressive inactivation of the enzyme becomes apparent. At best this represent only a partial solution to the problem, for clearly there are no such restrictions upon the enzyme in vivo.


Spinach Chloroplast Cyanuric Acid Envelope Membrane Triose Phosphate Hexose Monophosphates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, D. A., New Phytol. 72, 209–35 (1973).CrossRefGoogle Scholar
  2. 2.
    Walker, D. A., Curr. Top. Cell. Regul. 11, 203–41 (1976).PubMedGoogle Scholar
  3. 3.
    Warburg, O. and Kripphai, G., Hoppe Seyler’s Z. Physiol. Chem. 322, 225–37 (1963).CrossRefGoogle Scholar
  4. 4.
    Bahr, J. T. and Jensen, R. G., Plant Physiol. 53, 39–44 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    Bahr, J. T. and Jensen, R. G., Arch. Biochem. Biophys. 164, 408–13 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    Badger, M. R. and Andrews, T. J., Biochem. Biophys. Res. Commun. 60, 204–10 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    Lorimer, G. H., Badger, M. R., and Andrews, T. J., Biochemistry 15, 529–36 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    Badger, M. R. and Lorimer, G. H., Arch. Biochem. Biophys. 175, 723–9 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    Lorimer, G. H., Badger, M. R., and Andrews, T. J., Anal. Biochem. 78, 66–75 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    Badger, M. R., Ph.D. Thesis, The Australian National University, Canberra, 1976.Google Scholar
  11. 11.
    Laing, W. A., Ogren, W. L., and Hageman, R. H., Biochemistry 14, 2269–75 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    Laing, W. A. and Christeller, J. T., Biochem. J. 9, 563–70 (1976).Google Scholar
  13. 13.
    Pon, N. G., Rabin, B. R., and Calvin, M., Biochem. Z. 338, 7–19 (1963).PubMedGoogle Scholar
  14. 14.
    Miziorko, H. M. and Mildvan, A. S., J. Biol. Chem. 249, 274–350 (1974).Google Scholar
  15. 15.
    Filmer, D. L. and Cooper, T. G., J. Theor. Biol. 29, 131–45 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    Faurholt, C, J. Chim. Phys. 22, 1–44 (1925).Google Scholar
  17. 17.
    Morrow, J. S., Keim, P., and Gurd, F. R. N., J. Biol. Chem. 249, 7484–94 (1974).PubMedGoogle Scholar
  18. 18.
    Kilmartin, J. V., Fogg, J., Luzzana, M., and Rossi-Bernardi, L. J. Biol. Chem. 248, 7039–48 (1973).Google Scholar
  19. 19.
    Arnone, A., Nature London 247, 143–5 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    Bauer, C, Baumann, R., Engels, V., and Pacyna, B., J. Biol. Chem. 250, 2173–6 (1975).PubMedGoogle Scholar
  21. 21.
    Akoyunoglou, G., Argyrondi-Akoyunoglou, J. H., and Methenitou, H., Biochem. Biophys. Acta 132, 481–9(1967).Google Scholar
  22. 22.
    Manning, J. M., Cerami, A., Gillette, P. N., de Furia, F. G., and Miller, D. R., Adv. Enzymol. 40, 1–27 (1974).PubMedGoogle Scholar
  23. 23.
    Rose, I. A., O’Connell, E. L., Litwin, S., and Tarra, J. B., J. Biol. Chem. 249, 5163–6 (1974).PubMedGoogle Scholar
  24. 24.
    Siegel, M. and Lane, M. D., Biochem. Biophys. Res. Commun. 48, 508–16 (1972).PubMedCrossRefGoogle Scholar
  25. 25.
    McCurry, S. D. and Tolbert, N. E., J. Biol. Chem. 252, 83446 (1977).Google Scholar
  26. 26.
    Portis, A. R. and Heidt, H. W., Biochim. Biophys. Acta 449, 434–46 (1976).PubMedCrossRefGoogle Scholar
  27. 27.
    Krause, G. H., Biochim. Biophys. Acta 460, 500–10 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    Werdan, K., Heidt, H. W., and Milovancev, M., Biochim. Biophys. Acta 396, 276–92 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    Buchanan, B. B. and Schürmann, P., J. Biol. Chem. 248, 495–664 (1973).Google Scholar
  30. 30.
    Buchanan, B. B. and Schürmann, P., Curr. Top. Cell. Regul. 7, 1–20 (1973).PubMedGoogle Scholar
  31. 31.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 50, 224–7 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 52, 373–9 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 54, 556–9 (1974).PubMedCrossRefGoogle Scholar
  34. 34.
    Chu, D. K. and Bassham, J. A., Plant Physiol. 55, 720–6 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    Chollet, R. and Anderson, L. L., Arch. Biochem. Biophys. 176, 344–51 (1976).PubMedCrossRefGoogle Scholar
  36. 36.
    Tabita, F. R. and McFadden, B. A., Biochem. Biophys. Res. Commun. 48, 1153–8 (1972).PubMedCrossRefGoogle Scholar
  37. 37.
    Paulsen, J. M. and Lane, M. D., Biochemistry 5, 2350–7 (1966).PubMedCrossRefGoogle Scholar
  38. 38.
    Andrews, T. J. and Hatch, M. D., Phytochemistry 10, 9–15 (1971)CrossRefGoogle Scholar
  39. 39.
    Portis, A. R., Chon, C. J., Mosbach, A., and Heidt, H. W., Biochim. Biophys. Acta 461, 313–25 (1977).PubMedCrossRefGoogle Scholar
  40. 40.
    Heidt, H. W., Chon, C. J., and Lorimer, G. H., FEBS Lett., submitted (1978).Google Scholar
  41. 41.
    Bahr, J. T. and Jensen, R. G., Arch. Biochem. Biophys. 185, 39–48 (1978).PubMedCrossRefGoogle Scholar
  42. 42.
    Purczeld, P., Chon, C. J., Portis, A. R., Heidt, H. W., and Heber, U., Biochim. Biophys. Acta 501, 488–98 (1978).PubMedCrossRefGoogle Scholar
  43. 43.
    Fliege, R., Flügge, U. I., Werdan, K., and Heidt, H. W., Biochim. Biophys. Acta, submitted (1978)Google Scholar
  44. 44.
    Lorimer, G. H. and Heidt, H. W., unpublished results.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • George H. Lorimer
    • 1
  • Murray R. Badger
    • 2
  • Hans W. Heldt
    • 3
  1. 1.Abteilung für Zellchemie, Institut für Toxikologie und BiochemieGesellschaft für Strahlen- und Umweltforschung München mbHMünchen 2West Germany
  2. 2.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA
  3. 3.Institut für Physiologische Chemie, Physikalische Biochemie und ZellbiologieUniversität MünchenMünchen 2West Germany

Personalised recommendations