A Mutational Approach to the Study of Photorespiration

  • Mary B. Berlyn
Part of the Basic Life Sciences book series (BLSC, volume 11)


The ideal situation for applying a somatic cell genetics approach to a pathway present in cells of higher plants is the study of a pathway well defined in terms of the biochemistry of synthesis and regulation. This condition has been most nearly approached where bacterial and fungal systems have provided a model, as in selections for overproduction of aspartate-derived amino acids in rice (1) [ also proposed for corn (2) ] and for tryptophan pathway studies (3). However, the area of photosynthesis and photorespiration presents special problems (and opportunities) for a microbial genetics approach. The genetically best known microorganisms do not photosynthesize, and photosynthetic bacteria or even algae do not provide a high-fidelity model for the biochemical and genetic study of photorespiration in plants. In plants, we have not reached an understanding of some of the fundamental aspects of the pathway of photorespiration. Under these circumstances we are dependent on the plant mutants which we can obtain, rather than microbial mutants, to elucidate the pathway as well as eventually to provide a new means of regulation.


Variant Line Isonicotinic Acid Tobacco Callus Mutational Approach Tobacco Leaf Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaleff, R. and Carlson, P., in Modification of the Information Content of Plant Cells, pp. 197–214, R. Markham et a1., Editors, American Elsevier, New York, 1975.Google Scholar
  2. 2.
    Green, C. and Phillips, R., Crop Sci. 14, 827–30 (1974).CrossRefGoogle Scholar
  3. 3.
    Widholm, J., Crop Sci. 17, 597–600 (1977).CrossRefGoogle Scholar
  4. 4.
    Zelitch, I., Photosynthesis, Photorespiration, and Plant Productivity, Academic Press, New York, 1971.Google Scholar
  5. 5.
    Zelitch, I., Arch. Biochem. Biophys. 163, 367–77 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    Zelitch, I., Plant Physiol. 41, 1623–31 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    Zelitch, I., Plant Physiol. 43, 1829–37 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    Zelitch, I., Plant Physiol. 21, 299–305 (1973).CrossRefGoogle Scholar
  9. 9.
    Pritchard, G., Griffin, W., and Whittingham, C., J. Exp. Bot. 38, 176–84 (1962).CrossRefGoogle Scholar
  10. 10.
    Pritchard, G., Whittingham, C., and Griffin, W., J. Exp. Bot. 41, 281–9 (1963).CrossRefGoogle Scholar
  11. 11.
    Zelitch, I., Plant Physio1. 50, 109–13 (1972).CrossRefGoogle Scholar
  12. 12.
    Oliver, D. and Zelitch, I., Science 196, 1450–1 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    Oliver, D. and Zelitch, I., Plant Physio1. 59, 688–94 (1977).CrossRefGoogle Scholar
  14. 14..
    Oliver, D., Plant Physiol.63, in press (1978).Google Scholar
  15. 15.
    Berlyn, M. and Zelitch, I., Plant Physiol. 56, 752–6 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    Berlyn, M., Zelitch, I., and Beaudette, P., Plant Physiol. 61, 606–10 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    Bergmann, L., Planta 74, 243–9 (1967).CrossRefGoogle Scholar
  18. 18.
    Chandler, M., de Marsac, N., and deKouchkovsky, Y., Can. J. Bot. 50, 2265–70 (1972).CrossRefGoogle Scholar
  19. 19.
    Husernann, W. and Barz, W., Physiol. Plant. 40, 77–81 (1977).CrossRefGoogle Scholar
  20. 20.
    Street, H. E., in Plant Tissue and Cell Culture, pp. 64–5, H. E. Street, Editor, U. of California Press, Berkeley, 1973.Google Scholar
  21. 21.
    Warburg, O. and Krippahl, G., Z. Naturforsch. 15b, 364–7 (1960).Google Scholar
  22. 22.
    Asada, K., Saito, K., Kitoh, S., and Kasai, Z., Plant Cell Physiol. 6, 47–59 (1965).Google Scholar
  23. 23.
    Yoneda, M., Kato, N., and Okajirna, M., Nature London 170, 803 (1952).PubMedCrossRefGoogle Scholar
  24. 24.
    Youatt, J., Biochem. J. 68, 193–7 (1955).Google Scholar
  25. 25.
    Davison, A., Biochim. Biophys. Acta. 19, 131–40 (1956).CrossRefGoogle Scholar
  26. 26.
    Gore, M., Hill, H., Evans, R., and Rogers, L., Phytochemsitry 13, 1657–65 (1974).CrossRefGoogle Scholar
  27. 27.
    Krieger-Thiemer, E., Ber. Borstel 4, 299 (1957). (Cited in ref. 28.)Google Scholar
  28. 28.
    Seydel, J., Schaper, K. J., Wempe, E., and Cordes, H., J. Med. Chem. 19, 484–91 (1976).CrossRefGoogle Scholar
  29. 29.
    Devi, B., Shaila, M., Ramakrishnan, T., and Gopinathan, K., Biochem. J. 149, 187–97 (1975).PubMedGoogle Scholar
  30. 30.
    Miflin, B., in Biosynthesis and Its Control in Plants, pp. 4968, B. V. Milborrow, Editor, Academic Press, New York, 1973.Google Scholar
  31. 31.
    Miflin, B. and Lea, P., Annu. Rev. Plant Physiol. 8, 299–329 (1977).CrossRefGoogle Scholar
  32. 32.
    Vallee, J., Vansuyt, G., and Prevost, J., Physiol. Plant. 40, 269–74 (1977).CrossRefGoogle Scholar
  33. 33.
    Zelitch, I., Berlyn, M., Oliver, D., and Lawyer, A., in Proc. 2nd Latin Am. Bot. Congr., Brasilia, 1978, M. A. A. Hermans, Editor.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Mary B. Berlyn
    • 1
  1. 1.Department of BiochemistryConnecticut Agricultural Experiment StationNew HavenUSA

Personalised recommendations