Reutilization of Ribulose Bisphosphate Carboxylase

  • R. C. Huffaker
  • B. L. Miller
Part of the Basic Life Sciences book series (BLSC, volume 11)


Ribulose bisphosphate (RuBP) carboxylase is truly a multifunctional protein. Not only does it exhibit the well-known carboxylase and oxygenase activities, but also its high concentration and turnover characteristics in the leaf fit the classification of a storage protein. RuBP carboxylase varies in concentration by species but can be up to 65% of the total soluble protein of grass or alfalfa leaves. It is assembled and sequestered in a discrete organelle, the chloroplast, wherein it is protected from the proteolytic enzymes in the cytoplasm. In fact, it appears that carboxylase degradation is a cytoplasmically driven process. After its synthesis and assembly, little turnover is detected until plants require its remobilization. RuBP carboxylase can then be mobilized during senescence or when the plant requires its reserves because of deficits of either nitrogen or carbohydrates. As such, the RuBP carboxylase concentration in the leaf is very responsive to environmental stresses.


Proteolytic Activity Total Soluble Protein Chloroplast Membrane Ribulose Bisphosphate Label Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, M. A., Criddle, R. S., Peterson, L. W., and Huffaker, R. C, Arch. Biochem. Biophys. 165, 494–504 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    Peterson, L. W., Kleinkopf, G. E., and Huffaker, R. C, Plant Physiol. 51, 1042–5 (1973).CrossRefGoogle Scholar
  3. 3.
    Alscher, R., Smith, M. A., Peterson, L. W., Huffaker, R. C, and Criddle, R. S., Arch. Biochem. Biophys. 174, 216–25 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    Patterson, B. D. and Smillie, R. M., Plant Physiol. 47, 196–8 (1971).PubMedCrossRefGoogle Scholar
  5. 5.
    Zucker, M., Annu. Rev. Plant Physiol. 23, 133–56 (1972).CrossRefGoogle Scholar
  6. 6.
    Kannangara, C. G. and Woolhouse, H. W., New Phytol. 67, 533–42 (1968).CrossRefGoogle Scholar
  7. 7.
    Dorner, R. W., Kahn, A., and Wildman, S. G., J. Biol. Chem. 229, 945–52 (1957).PubMedGoogle Scholar
  8. 8.
    Kawashima, N., Imai, A., and Tamaki, E., Plant Cell Physiol. 8, 447–58 (1967).Google Scholar
  9. 9.
    Kawashima, N. and Mitake, T., Agric. Biol. Chem. 33, 539–43 (1969).CrossRefGoogle Scholar
  10. 10.
    Kawashima, N. and Wildman, S. G., Annu. Rev. Plant Physiol. 21, 325–58 (1970).CrossRefGoogle Scholar
  11. 11.
    Peterson, L. W. and Huffaker, R. C, Plant Physiol. 55, 1009–15 (1975).CrossRefGoogle Scholar
  12. 12.
    Wittenbach, V. A., Plant Physiol. 59, 1039–42 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    Huffaker, R. C. and Peterson, L. W., Annu. Rev. Plant Physiol. 25, 363–92 (1974).CrossRefGoogle Scholar
  14. 14.
    Soong, T-S. J., Feller, U. K., and Hageman, R. H., Plant Physiol. Suppl. 59, 112 (1977).Google Scholar
  15. 15.
    Feller, U. K., Soong, T-S. J., and Hageman, R. H., Plant Physiol. 59, 290–4 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    Dalling, M. J., Boland, G., and Wilson, J. H., Aust. J. Plant Physiol. 3, 721–30 (1976).CrossRefGoogle Scholar
  17. 17.
    Beevers, L., in Biochemistry and Physiology of Plant Growth Substances, pp. 1417–35, F. Wightman and G. Setterfield, Editors, Runge, Ottawa, 1968Google Scholar
  18. 18.
    van Loon, L. C. and Haverkort, A. J., Plant Physiol. Suppl. 59, 113 (1977).Google Scholar
  19. 19.
    Drivdahl, R. H. and Thimann, K. V., Plant Physiol. 59, 1059–63 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas, H., Planta 137, 53–60 (1977).CrossRefGoogle Scholar
  21. 21.
    Thomas, H., Rep. Welsh PI. Breed. Stn. for 1975, pp. 133–8.Google Scholar
  22. 22.
    Thomas, H. and Stoddart, J. L., Plant Physiol. 56, 438–41 (1975)PubMedCrossRefGoogle Scholar
  23. 23.
    Martin, C. and Thimann, K. V., Plant Physiol. 49, 64–71 (1972).PubMedCrossRefGoogle Scholar
  24. 24.
    Choe, H. J. and Thimann, K. V., Plant Physiol. 55, 828–34 (1975)PubMedCrossRefGoogle Scholar
  25. 25.
    Sinclair, T. R., and de Wit, C. T., Agron. J. 68, 319–24 (1976).CrossRefGoogle Scholar
  26. 26.
    Rao, K. P., Rains, D. W., Qualset, C. O., and Huffaker, R.C, Crop Sei. 17, 283–6 (1977).CrossRefGoogle Scholar
  27. 27.
    Sinclair, T. R. and de Wit, C. T., Science 189, 565 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    Hardy, R. W. F., Burns, R. C, Hebert, R. R., Holsten, R. D., and Jackson, E.K., in Biological Nitrogen Fixation in Natural and Agricultural Habitats, p. 561, T. A. Lie and E. G. Mulder, Editors, Nijoff, The Hague, 1971.Google Scholar
  29. 29.
    Abu-Shakra, S. S., Phillips, D. A., and Huffaker, R. C., Science 199, 973–5 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    Mondal, M. H., Brun, W. A., and Brenner, M. L., Plant Physiol. 61, 394–7 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    Arnon, D. I., Plant Physiol. 24, 1–15 (1949).PubMedCrossRefGoogle Scholar
  32. 32.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. Biol. Chem. 193, 265–75 (1951).PubMedGoogle Scholar
  33. 33.
    Davis, B. J., Ann. N. Y. Acad. Sei. 121, 404–27 (1964).CrossRefGoogle Scholar
  34. 34.
    Bethlenfalvay, G. J. and Phillipps, D. A., Plant Physiol. 60, 868–71 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    Huffaker, R. C. and Miller, B. L., Unpublished, 1978.Google Scholar
  36. 36.
    Frye, K., presented at Conf. on Capture, Conversion, and Conservation of Energy in Plants, Michigan State U., 1977.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. C. Huffaker
    • 1
  • B. L. Miller
    • 1
  1. 1.Plant Growth Laboratory, Department of Agronomy & Range ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations