Advertisement

Fraction I Protein and Other Products from Tobacco for Food

  • S. G. Wildman
  • P. Kwanyuen
Part of the Basic Life Sciences book series (BLSC, volume 11)

Abstract

Depending on the point of view, the tobacco plant is either extolled for the solace it brings to those who smoke and/or for the secure economic rewards from its cultivation and manufacture, or branded a weed of unmitigated evil for its effect on health. The latter view now seems to be the more popular. However, there is another possibility. Tobacco plants can be used as a source of high-grade protein for human consumption. The exploitation of this possibility could turn tobacco into an agricultural commodity of undeniable value. Since the idea of using leaf protein is not new, the purpose of this paper is to present reasons for thinking that tobacco plants could be a superior source of supplemental protein in the human diet compared with leaf proteins from other plants.

Keywords

Tobacco Plant Amino Acid Composition Tobacco Leave Filter Cake Specific Enzymatic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawashima, N. and Wildman, S. G., Biochim. Biophys. Acta 229, 240–9 (1971).PubMedGoogle Scholar
  2. 2.
    Chan, P. H., Sakano, K., Singh, S., and Wildman, S. G., Science 176, 1145–6 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    Baker, T. S., Eisenberg, D., Eiserling, F. A., and Weissman, L., J. Mol. Biol. 91, 391–9 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    Singh, S. and Wildman, S. G., Plant Cell Physiol. 15, 373–9 (1974).Google Scholar
  5. 5.
    Sakano, K. and Wildman, S. G., Plant Sei. Lett. 2, 273–6 (1974).CrossRefGoogle Scholar
  6. 6.
    Sakano, K., Partridge, J. E., and Shannon, L. M., Biochim. Biophys. Acta 329, 339–41 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    Chollet, R., Anderson, L. L., and Hovsepian, L. C., Biochem. Biophys. Res. Commun. 64, 97–107 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Kawashima, N., Singh, S., and Wildman, S. G., Biochem. Biophys. Res. Commun. 42, 664–8 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    Kwok, S. Y., Kawashima, N., and Wildman, S. G., Biochim. Biophys. Acta 234, 293–6 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    Protein Requirements, FAO Nutrition Studies No. 16, UN, Rome, 1957.Google Scholar
  11. 11.
    Block, R. J. and Boiling, D., Amino Acid Composition of Proteins and Foods, 2nd ed., Charles C. Thomas, Springfield, IL, 1951.Google Scholar
  12. 12.
    Block, R. J. and Weiss, K. W., Amino Acid Handbook, Charles C. Thomas, Springfield, IL, 1956.Google Scholar
  13. 13.
    Kawashima, N., Kwok, S. Y., and Wildman, S. G., Biochim. Biophys. Acta 236, 578 (1971).PubMedGoogle Scholar
  14. 14.
    Lowe, R. H., FEBS Lett. 78, 98–100 (1977).CrossRefGoogle Scholar
  15. 15.
    Ershoff, B. H., Wildman, S. G., and Kwanyuen, P., Proc. Soc. Exp. Biol. Med. 157, 626–30 (1978).PubMedGoogle Scholar
  16. 16.
    Oelschlegel, F. J., Schroeder, J. R., and Stahmann, M. A., J. Agric. Food Chem. 17, 791–5 (1969).CrossRefGoogle Scholar
  17. 17.
    Spencer, R. R., Mottola, A. C., Bickoff, E. M., Clark, J. P., and Kohler, G. O., J. Agric. Food Chem. 19, 504–7 (1971).CrossRefGoogle Scholar
  18. 18.
    Andrews, T. J., Lorimer, G. H., and Tolbert, N. E., Biochemistry 12, 11–18 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    Chan, P. H. and Wildman, S. G., Biochim. Biophys. Acta 277, 677–80 (1972).PubMedGoogle Scholar
  20. 20.
    Nishimura, M., Takebe, T., Sugiyama, T., and Akazawa, T., J. Biochem. Tokyo 75, 945 (1973).Google Scholar
  21. 21.
    Chen, K., Wildman, S. G., and Smith, H. H., Proc. Natl. Acad. Sei. USA 74, 5109–12 (1977).CrossRefGoogle Scholar
  22. 22.
    Kawashima, N., Kwok, S. Y., and Wildman, S. G., Biochim. Biophys. Acta 236, 578 (1971).PubMedGoogle Scholar
  23. 23.
    Singh, S. and Wildman, S. G., Mol. Gen. Genet. 124, 187–96 (1973).PubMedCrossRefGoogle Scholar
  24. 24.
    Gray, J. C, Kung, S. D., Wildman, S. G., and Sheen, S. J., Nature London 252, 226 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    Kawashima, N., Tanabe, Y., and Iwai, S., Biochim. Biophys. Acta 427, 70–7 (1976).PubMedGoogle Scholar
  26. 26.
    Strobaek, S., Gibbons, G. C., Haslett, B., Boulter, D., and Wildman, S. G., Carlsberg Res. Commun. 41, 335–43 (1976).CrossRefGoogle Scholar
  27. 27.
    Kung, S. D., Sakano, K., Gray, J. C., and Wildman, S. G., J. Mol. Evol. 7, 59–64 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    Uchimiya, H., Chen, K., and Wildman, S. G., Stadler Genet. Symp. 9, 83–100 (1977).Google Scholar
  29. 29.
    von Wettstein, F., Naturwissenschaften 31, 574–7 (1943).CrossRefGoogle Scholar
  30. 30.
    Ellis, R. J., Biochim, Biophys, Acta 463, 185–215 (1977).Google Scholar
  31. 31.
    Gray, J. C. and Keckwick, R. G. O., Eur. J. Biochem. 44, 491-500 (1974).PubMedCrossRefGoogle Scholar
  32. 32.
    Gooding, L. R., Roy, H., and Jagendorf, A. T., Arch. Biochem. Biophys. 159, 324–35 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    Hirai, A., Proc. Natl. Acad. Sei. USA 74, 3443–5 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • S. G. Wildman
    • 1
  • P. Kwanyuen
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations