Advertisement

Recent Developments in High Power CO2 Laser Mode-Locking and Pulse Selection

  • P. B. Corkum
  • A. J. Alcock
  • D. J. James
  • K. J. Andrews
  • K. E. Leopold
  • D. F. Rollin
  • J. C. Samson

Abstract

Injection mode-locking techniques have been applied to a wide range of CO2 laser oscillators and power gains as high as 1012 observed. Recent results obtained with uv preionized multi-atmosphere and atmospheric pressure CO2 lasers are reported and compared with the predictions of a numerical modelling study. In addition the recent development of semiconductor reflection switching offers the possibility of selecting single pulses from a multigigawatt mode-locked oscillator while simultaneously providing the advantage of retro-pulse isolation. Single pulses in the 1-2 J range have been selected by this technique.

Keywords

Plasma Density Horizontal Scale Ruby Laser Oscilloscope Trace Slave Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Boyer and R. Cooper, Laser Interaction and Related Plasma Phenomena, edited by H.J. Schwarz and H. Hora (Plenum Press, New York, 1971), p. 333 ff.Google Scholar
  2. 2.
    K. Boyer, “Laser Program at LASL, Progress Report for the period July through 31 December, 1973”, Los Alamos Scientific Laboratory Report LA-5366-PR (July 1973).Google Scholar
  3. 3.
    M.C. Richardson, N.H. Burnett, G.D. Enright, P. Burtyn and K.E. Leopold, Opt. Commun., 18, 168 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    L.C. Johnson and T.K. Chu, Phys. Rev. Lett., 32, 517 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    H.L. Rutkowski, D.W. Schudder, Z.A. Pietrzyk and G.C. Vlases, Appl. Phys. Lètt., 26, 421 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    P.A. Bélanger and J. Boivin, Can. J. Phys., 54, 720 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    A.J. Alcock, P.B. Corkum, D.J. James, K.E. Leopold and J.C. Samson, Opt. Commun., 18, 543 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Alcock, P.B. Corkum and D.J. James, Appl. Phys. Lett., 30, 148 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Siegman, Proc. IEEE, 53, 277 (1965).CrossRefGoogle Scholar
  10. 10.
    P.E. Dyer, D.J. James and S.A. Ramsden, Opt. Commun., 5 236 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    A.E. Siegman, Appl. Opt., 13, 353 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    P.E. Dyer and D.J. James, Appl. Phys. Lett., 26, 331 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    P. Lavigne, J. Gilbert and J.-L. Lachambre, Opt. Commun., 14, 194 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    P.A. Bélanger and J. Boivin, Phys. Can., 30, No. 3, 47 (1974).Google Scholar
  15. 15.
    K. Kurokavva, Proc. IEEE, 51, 1386 (1973).CrossRefGoogle Scholar
  16. 16.
    N.G. Basov, A.Z. Grasyuk and I.G. Zubarev, Sov. Phys. — Dokl, 9, 679 (1965).ADSGoogle Scholar
  17. 17.
    C.J. Buczek, R.J. Freiberg and M.L. Skolnick, Proc. IEEE, 61, 1411 (1973).CrossRefGoogle Scholar
  18. 18.
    C.J. Buczek and R.J. Freiberg, IEEE J. Quantum Electron., QE-8, 641 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Izatt and C.J. Budhiraja, Phys. Can., 31, No. 3, 19 (1975).Google Scholar
  20. 20.
    J.-L. Lachambre, P. Lavigne, G. Otis and M. Noël, IEEE J. Quantum Electron., QE-12, 756 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    L.E. Erickson and A. Szabo, Appl. Phys. Lett., 18, 433 (1971).ADSCrossRefGoogle Scholar
  22. 22.
    S. Blit, U. Ganiel, and D. Treves, Appl. Phys., 12, 69 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Bélanger and J. Boivin, IEEE. J. Quantum Electron., QE-11, 739 (1975).Google Scholar
  24. 24.
    A.J. Alcock and A.C. Walker, Appl. Phys. Lett., 25, 299 (1974).ADSCrossRefGoogle Scholar
  25. 25.
    J.J. Turner, E.I. Moses and C.L. Tang, Appl. Phys. Lett., 27, 441 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    H.D. Morrison, P.B. Corkum and A.J. Alcock, Bull. Am. Phys. Soc., 21, 800 (1976).Google Scholar
  27. 27.
    K.J. Andrews, P.E. Dyer and D.J. James, J. of Phys. E.: Sei. Instrum., 8, 493 (1975).ADSCrossRefGoogle Scholar
  28. 28.
    A.J. Alcock, K. Leopold and M.C. Richardson, Appl. Phys. Lett., 23, 562 (1973).ADSCrossRefGoogle Scholar
  29. 29.
    A.J. Alcock, K. Andrews, P.B. Corkum and D.J. James, unpublished.Google Scholar
  30. 30.
    A.J. Alcock P.B. Corkum and D.J. James, Appl. Phys. Lett., 27, 680 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Alcock, H.A. Baldis, P.B. Corkum, J.C. Samson and W.J. Sarjeant, to be published in “Proceedings of the 12th International Congress on High Speed Photography”, edited by M.C. Richardson, (Society of Photo-Optical Instrumentation Engineers, Calif. 1977).Google Scholar
  32. 32.
    D. Austonarid, C.V. Shank, Phys. Rev. Lett., 32, 1120 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    R.A. Smith, Semiconductors, Cambridge University Press, London (1968).Google Scholar
  34. 34.
    W. Kaiser, R.J. Collins and H.Y. Fan, Phys. Rev., 91, 1380 (1953).ADSCrossRefGoogle Scholar
  35. 35.
    H.B. Briggs and R.C. Fletcher, Phys. Rev., 91, 1342 (1953).ADSCrossRefGoogle Scholar
  36. 36.
    I.V. Tomov, R. Fedosejevs, M.C. Richardson and W.J. Orr, Appl. Phys. Lett., 29, 192 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • P. B. Corkum
    • 1
  • A. J. Alcock
    • 1
  • D. J. James
    • 1
    • 2
  • K. J. Andrews
    • 1
    • 3
  • K. E. Leopold
    • 1
  • D. F. Rollin
    • 1
  • J. C. Samson
    • 1
  1. 1.Division of PhysicsNational Research Council of CanadaOttawaCanada
  2. 2.Lumonics Research LimitedKanataCanada
  3. 3.University of HullHullEngland

Personalised recommendations