Laser Damage Phenomenology in Materials

  • R. A. Armistead
  • T. J. Magee


Improvements in laser technology must be accompanied by concomitant improvements in optical materials. The presence of both macroscopic and microscopic defects contribute significantly to the evolution of damage in optical components. It is well known that macroscopic defects such as scratches, polishing pits, and inclusions at the surface of a material will tend to scatter incident light from the sample. Absorption and local heating will occur at cavities or near inclusions of varying dielectric constant, often resulting in catastrophic surface breakdown on bulk material failure. The presence of microscopic defects such as vacancies, interstitials, or “impurities” in a crystal may effect the absorption of light by causing a local perturbation of the lattice spectrum. Larger defects such as dislocations, voids, inclusions, and grain boundaries often serve as scattering centers or absorbers, depending upon dimensions, charge configuration, the wavelength of light, and the relative absorption efficiencies. Other defects, introduced either during material growth or as a result of exposure to ionizing radiation (e.g., electronic traps, color centers, impurity-vacancy pairs) can substantially affect absorption in both the visible-UV region and the infrared region of the spectrum.


Transmission Electron Microscope Analysis Infrared Absorption Electron Irradiation Alkali Halide Transmission Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Magee, J. Peng and J. Bean, Proc. Electron Micros. Soc. Amer., Claitor Publ. Co., Baton Rouge, Louisiana, 1974, p. 548.Google Scholar
  2. 2.
    T. J. Magee, N. M. Johnson, M. Lehmann, J. Peng and J. Hannigan, Rev. Sei. Instruments 47, 301 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    M. Hass, J. W. Davisson, H. B. Rosenstock and J. Babiskin, Appl. Opt. 14, 1128 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    L. H. Skolnik, A. Hordrick and A. Kahan, Appl. Phys, Lett. 23, 477 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    E. Bernal, Appl. Opt. 14, 314 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    M. Sparks and L. J. Sham, Solid State Comm. 11, 1451 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    M. Sparks, 4th Amer. Soc. Testing Mater. Symp. — Damage in Laser Mater., Boulder, Colorado, 1972 (unpublished).Google Scholar
  8. 8.
    T. J. Magee, J. Peng and J. Bean, Phys. Stat. Solidi (A) 27, 557 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    T. J. Magee, SRI Technical Report No. 2266–1, Menlo Park, California, 1972.Google Scholar
  10. 10.
    C. Phillipi, U.S. Air Force Materials Lab., Dayton, Ohio, 1973 (unpublished data).Google Scholar
  11. 11.
    T. J. Magee, N. M. Johnson and J. Peng, Phys. Stat. Solidi (A) 30, 81 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    T. J. Magee, N. M. Johnson and J. Peng, Phys. Stat. Solidi (A) 33, 415 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    J. R. Hopkins, J. J. Martin and J. Larkin, J. Appl. Phys. 45, 2804 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    J. Arends, H. W. Den Hartog and A. J. Dekker, Phys. Stat. Sol. 10, 105 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    P. B. Still and D. Pooley, Phys. Stat. Sol. 32, K147 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    H. G. Lipson, P. Ligor, A. Kahan and J. J. Martin, Bull. Amer. Phys. Soc. 20, 377 (1975).Google Scholar
  17. 17.
    S. Miyamoto, S. Kawashima and S. Shionoya, J. Phys. Soc. Japan 24, 1182 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • R. A. Armistead
    • 1
  • T. J. Magee
    • 1
  1. 1.Stanford Research InstituteMenlo ParkUSA

Personalised recommendations