Plasma Experiments with 1.06-µm Lasers at the Lawrence Livermore Laboratory

  • H. G. Ahlstrom
  • J. F. Holzrichter
  • K. R. Manes
  • E. K. Storm
  • M. J. Boyle
  • K. M. Brooks
  • R. A. Haas
  • D. W. Phillion
  • V. C. Rupert


Recent laser fusion experiments at the Lawrence Livermore Laboratory have provided basic data concerning: laser beam propagation and absorption in high temperature plasmas, electron energy transport processes that transfer the absorbed laser energy to the high-density ablation region, the general fluid dynamic expansion and compression of the heated plasma, and the processes responsible for the production of 14-MeV neutrons during implosion experiments. Irradiation experiments were performed with Nd:YAG glass laser systems: the two-beam Janus (≲40 J/100 ps, ̴0.4 TW) and Argus (≲140 J, 35 ps, ̴4 TW), and the single beam Cyclops (≲70 J/100 ps, ̴0.7 TW). Two classes of targets have been used: glass microshells (̴40 to 120 µm in diameter with ̴0.75-µm-thick walls) filled with an equimolar deuterium-tritium mixture, and disks (̴160 to 600 µm in diameter and ̴10 µm thick) of several compositions. The targets were supported in vacuum (pressure ≲<10-5 Torr) by thin glass stalks.

This paper reports on results related to the propagation, absorption, and scattering of laser light by both spherical and planar targets. Our absorption measurements cannot be explained by inverse bremsstrahlung alone. The scattered light and the plasma energy are polarization dependent, which is evidence of resonance absorption.

The x-ray spectra are characterized by a thermal and a suprathermal distribution. The “temperature” of the hot x-rays is given by θH ̴I0.3-0.4 depending on the target material. Evidence presented indicates that the laser radiation pressure is producing density steepening in the region of the critical density with:
$${\rm n}_{{\rm cr}} \left( {{{\rm \partial n} \over \rm {\partial x}}} \right)_{{\rm cr}}^{ - 1} \, \sim \,{\rm \sigma }\left( {1\,{\rm \mu m}} \right).$$
In some cases, plasma filamentation is observed.


Radiation Pressure Resonance Absorption Plasma Energy Plasma Experiment Inverse Bremsstrahlung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    J. L. Emmett, J. Nuckolls, L. Wood, Sei. Am. 230, 24 (1974).Google Scholar
  3. 3.
    K. R. Manes, H. G. Ahlstrom, R. A. Haas, J. F. Holzrichter, Lawrence Livermore Laboratory, Rept. UCRL-78771, accepted for publication by J. Opt. Soc, Am.Google Scholar
  4. 4.
    J. F. Holzrichter, D. R. Speck, J. Appl. Phys. 47, 2459 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. Glaze, W. W. Simmons, W. F. Hägen, Lawrence Livermore Laboratory, Rept. UCRL-77944 (1976).Google Scholar
  6. 6.
    D. R. Speck, W. W. Simmons, Lawrence Livermore Laboratory, Rept. UCRL-78438 (1976).Google Scholar
  7. 7.
    R. A. Haas, W. C. Mead, W. L. Kruer, D. W. Phillion, H. N. Kornblum, J. D. Lindl, D. MacQuigg, V. C. Rupert, K. G. Tirsell, Lawrence Livermore Laboratory, Rept. UCRL-77930 (1976), accepted for publication by Phys. Fluids.Google Scholar
  8. 8.
    E. K. Storm, H. G. Ahlstrom, J. F. Holzrichter, Lawrence Livermore Laboratory, Rept. UCRL-78729 (1976).Google Scholar
  9. 9.
    E. K. Storm, H. G. Ahlstrom, J. A. Monjes, J. E. Swain, V. C. Rupert, D. W. Phillion, Lawrence Livermore Laboratory, Rept. UCRL-78730 (1976).Google Scholar
  10. 10.
    E. K. Storm, H. G. Ahlstrom, M. J. Boyle, D. W. Phillion, V. C. Rupert, K. G. Tirsell, D. R. Speck, F. Rainer, L. W. Coleman, R. A. Lerche, H. N. Kornblum, Lawrence Livermore Laboratory, Rept. UCRL-78581 (1976).Google Scholar
  11. 11.
    K. R. Manes, J. T. Larsen, D. T. Attwood, D. W. Phillion, J. M. Auerbach, J. E. Swain, Lawrence Livermore Laboratory, Rept. UCRL-78449 (1976).Google Scholar
  12. 12.
    K. G. Estabrook, E. J. Valeo, W. L. Kruer, Phys. Fluids 18, 1151 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    D. R. MacQuigg, D. R. Speck, Lawrence Livermore Laboratory, Rept. UCRL-78447 (1976).Google Scholar
  14. 14.
    V. C. Rupert, S. R. Gunn, J. F. Holzrichter, Bull. Am. Phys. Soc. 20, 1286 (1976).Google Scholar
  15. 15.
    V. C. Rupert, S. R. Gunn, J. F. Holzrichter, S. S. Glaros, J. R. Severyn, Lawrence Livermore Laboratory, Rept. UCRL-78436 (1976).Google Scholar
  16. 16.
    W. L. Kruer, in Progress in Lasers and Laser Fusion (Plenum Press, New York, 1975), pp. 5–26.Google Scholar
  17. 17.
    E. Valeo, private communication, 1976.Google Scholar
  18. 18.
    C. F. McConaghy, L. W. Coleman, Appl. Phys. Lett. 25, 268 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    D. T. Attwood, L. W. Coleman, J. T. Larsen, E. K. Storm, Phys. Rev. Lett. 37, 499 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    S. S. Glaros, K. G. Tirsell, V. C. Rupert, H. C. Catron, V. W. Slivinsky, Lawrence Livermore Laboratory, Rept. UCRL-78427 (1976).Google Scholar
  21. 21.
    D. W. Phillion, R. L. Lerche, Lawrence Livermore Laboratory, Rept. UCRL-78444 (1976).Google Scholar
  22. 22.
    D. W. Phillion, R. A. Lerche, V. C. Rupert, K. E. Manes, S. R. Gunn, Bull. Am. Phys. Soc. 20, 1286 (1975).Google Scholar
  23. 23.
    S. S. Glaros, A. J. Glass, Proceedings of the Sixth Symposium of Engineering Problems of Fusion Research, San Diego, Calif., 1975 (IEEE Nuclear and Plasma Sciences Society, New York, N.Y., 1976) p. 84.Google Scholar
  24. 24.
    J. E. Swain, E. K. Storm, H. G. Ahlstrom, F. Rienecker, A. J. Glass, J. A. Monjes, K. R. Manes, D. E. Campbell, Lawrence Livermore Laboratory, Rept. UCRL-78445 (1976).Google Scholar
  25. 25.
    J. J. Thompson, C. E. Max, J. Erkkila, J, E. Tull, Phys. Rev. Lett. 37, 1052 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    R. A. Haas, M. J. Boyle K. R. Manes, J. E. Swain, J. Appl. Phys. 47, 1318 (1976).ADSCrossRefGoogle Scholar
  27. 27.
    T. P. Donaldson, I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).ADSCrossRefGoogle Scholar
  28. 28.
    D. R. MacQuigg, J. F. Holzrichter, J. T. Hunt, J. E. Swain, D. R. Speck, E. K. Storm, K. J. Pettipiece, Bull. Am. Phys. Soc. 20, 1285 (1975).Google Scholar
  29. 29.
    H. Hora, Phys. Fluids 12, 182 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    R. E. Kidder, Proceedings of the Japan-United States Seminar on Laser Interaction with Matter, Kyoto, Japan, 1972 (Japan Society for the Promotion of Science, 1973), p. 331.Google Scholar
  31. 31.
    D. T. Atwood, Lawrence Livermore Laboratory, Rept. UCRL-77744 (1976).Google Scholar
  32. 32.
    K. A. Brueckner, Phys. Rev. Lett. 36, 677 (1976).ADSCrossRefGoogle Scholar
  33. 33.
    R. C. Malone, R. L. McCrory, R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    D. A. Tidman, R. A. Shanny, Phys. Fluids 17, 1207 (1974).ADSCrossRefGoogle Scholar
  35. 35.
    W. M. Manheimer, H. H. Klein, Bull. Am. Phys. Soc. 19, 920 (1974).Google Scholar
  36. 36.
    J. T. Larsen, J. J. Thomson, C. E. Max, Bull. Am. Phys. Soc. 21, 1029 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. G. Ahlstrom
    • 1
  • J. F. Holzrichter
    • 1
  • K. R. Manes
    • 1
  • E. K. Storm
    • 1
  • M. J. Boyle
    • 1
  • K. M. Brooks
    • 1
  • R. A. Haas
    • 1
  • D. W. Phillion
    • 1
  • V. C. Rupert
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations