Possibility of Grasers using Nuclear Excitation by Electron Transition

  • K. Okamoto


It was recently shown that some transitions of atomic electrons can excite the nuclear state, provided that certain conditions are satisfied. This mechanism, called NEET (abbreviation of nuclear excitation by electron transition), may possibly be used for a graser. Although the NEET probability is much smaller than the atomic excitation that gives rise to NEET, the life-time of the nuclear state is much longer than the corresponding atomic state, and hence is convenient for pumping. Numerical examples show, however, that the necessary pumping power is much higher than the presently available one, but it can be shown that as far as the excitation rate of the nuclear state is concerned, NEET is superior to other methods, such as direct atomic or nuclear excitation. Future progress of this field may solve the problem of the pumping power, in which case NEET may be used for a graser.


Ionization Cross Section Atomic Transition Nuclear State Nuclear Level Nuclear Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Morita, Progr. Theor. Phys. 49 (1973) 1574.ADSCrossRefGoogle Scholar
  2. 2.
    M. Morita, Lecture given at the 5th Internation Conference on Atomic Physics at Berkeley, California, July, 1976.Google Scholar
  3. 3.
    K. Otozai, Butsuri (Proceedings of the Physical Society of Japan, in Japanese) 30 (1975) 273.Google Scholar
  4. 4.
    V.l. Goldanskii and V.A. Namiot, Phys. Letters 62B (1976) 393.ADSGoogle Scholar
  5. 5.
    S. Bernow et al, Phys. Rev. Letters, 18 (1967) 787; 21 (1968) 457.Google Scholar
  6. 6.
    K. Otozai, R. Arakawa and M. Morita, Progr. Theor. Phys., 50 (1973) 1771.ADSCrossRefGoogle Scholar
  7. 7.
    K. Otozai, R. Arakawa, T. Saito and M. Morita, Preprint (1976).Google Scholar
  8. 8.
    A.M. Arthurs and B.L. Moiseiwitsch, Proe. Roy. Soc. (London) A247 (1958) 550.ADSCrossRefGoogle Scholar
  9. 9.
    S.G. Malmskog, V. Berg, and A. Bäcklin, Nuc. Phys., A153 (1970) 316.ADSGoogle Scholar
  10. 10.
    V.M. Burke and I.P. Grant, Proe. Roy. Soc.(London) 90 (1967) 297.CrossRefGoogle Scholar
  11. 11.
    J.P. Desclaux and Yong-Ki Kim, J. Phys. B8 (1975) 1177.ADSGoogle Scholar
  12. 12.
    W.B. Lewis, private communication.Google Scholar
  13. 13.
    G. Chapline and L. Wood, Physics Today, June, 1975.Google Scholar
  14. 14.
    L. Wood and G. Chapline, Nature, 252 (1974) 447.ADSCrossRefGoogle Scholar
  15. 15.
    G.C. Baldwin and R.V. Khokhlov, Physics Today, February, 1975.Google Scholar
  16. 16.
    W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price and P. Venugopala Rao, Rev. Mod. Phys. 44 (1972) 716.ADSCrossRefGoogle Scholar
  17. 17.
    W.L. Bond, M.A. Duguay and P.M. Rentzepis, App. Phys. Letters 10 (1969) 216.ADSCrossRefGoogle Scholar
  18. 18.
    D. Marcuse, IEEE Proe. 51 (1963) 849.CrossRefGoogle Scholar
  19. 19.
    J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39 (1967) 125.ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Lederer, J.M. Hollander and I. Perlman, Table of Isotopes, Sixth Edition, J. Wiley and Sons Inc., New York, 1967.Google Scholar
  21. 21.
    Nuclear Level Schemes A = 45 through A = 257 from Nuclear Data Sheets, ed. by Nuclear Data group, Academic Press Inc. (1973). Google Scholar
  22. 22.
    J.J. Vrakking and F. Meyer, Phys. Rev. 9A (1974) 1932.ADSGoogle Scholar
  23. 23.
    W.M.J. Veigele, Atomic Data 5 (1973) 51.ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Hannon and G.T. Trammel, Opt. Com. 15 (1975) 330.ADSCrossRefGoogle Scholar
  25. 25.
    J.W. Poukey and A.J. Toepfer, Phys. of Fluids 17 (1974) 1582.ADSCrossRefGoogle Scholar
  26. 26.
    O. Keski-Rahkonen and M.O. Krause, Atomic and Nuclear Data Tables 14 (1974) 139.ADSCrossRefGoogle Scholar
  27. 27.
    Physics Today, September (1974) p.17.Google Scholar
  28. 28.
    Mösbauer Effect Data Index, ed. by J.G. Stevens and V.E. Stevens, IFX/Plenum Data Company (1975).Google Scholar
  29. 29.
    Yu. Kagan, JETP Letters 20 (1974) 11.ADSGoogle Scholar
  30. 30.
    R.W. Waynant and R.C. Elton, IEEE Proc. 64 (1976) 1059ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • K. Okamoto
    • 1
  1. 1.Dept. of Applied MathematicsUniversity of New South WalesKensingtonAustralia

Personalised recommendations