Direct Nuclear Pumped Lasers — Status and Potential Applications

  • G. H. Miley


Recent direct nuclear gumped leaser (DNPL) research is reviewed with emphasis on recent experiments at the U. of I11. employing three gas mixtures (Ne-N2, He-Ne-O2, and He-Hg). Lasing has been obtained in the cases of N2 and Hg, and gain has been observed in O2. All three mixtures are discussed with particular attention to He-Hg where visible laser output on the 6150-Å ion transition in Hg+ has been achieved.

Scaled-up versions of present experimental lasers are considered that potentially capitalize on the unique ability to pump large volumes of high-pressure gases using neutron-initiated nuclear reactions in 3He or UF6 mixtures. A multi-MJ laser based on existing fast-burst reactor technology appears feasible in the near term.

More advanced designs offer even larger energies, but require considerable development. Use of a DNPL to provide improved energy recirculation in a laser-fusion system appears attractive provided appropriate energy storage and pulse shaping techniques can be developed. Possible approaches using either a flowing transfer-type DNPL or a deuterium-rich pellet with a neutron propagation blanket.


Neutron Flux Laser Output Laser Cavity Fission Fragment Laser Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Miley, Direct Conversion of Nuclear Radiation Energy, American Nuclear Society, Hinsdale, IL (1970).Google Scholar
  2. 2.
    J. C. Guyot, G. H. Miley and J. T. Verdeyen, “Application of a Two-Region Heavy Charged Particle Model to Noble-Gas Plasmas Induced by Nuclear Radiation,” Nucl. Sci. Eng., 48, 373–386 (1972).Google Scholar
  3. 3.
    B. Wang and G. H. Miley, “Monte Carlo Simulation of Radiation- Induced Plasmas,” Nucl. Sci. Engr., 52, 130 (1973).Google Scholar
  4. 4.
    R. Lo and G. H. Miley, “Electron Energy Distribution in a Helium Plasma Created by Nuclear Radiations,” IEEE Trans, on PlasmaSci., PS-2, 198 (1974).Google Scholar
  5. 5.
    G. H. Miley, C. Bathke, E. Maceda and C. Choi, “Energy Distributions and Radiation Transport in Uranium Plasmas,” Proe., 3rd Conf. Uranium Plasmas and Applications, Princeton University, Princeton, N.J. (June 1976).Google Scholar
  6. 6.
    D. A. McArthur and P. B. Tollefsrud, “Observation of Laser Action in CO Gas Excited Only by Fission Fragments,” Apply. Phys. Letters, 26, 181 (1974).Google Scholar
  7. 7.
    G. J. Lockwood and G. H. Miller, “Experimental Apparatus for Measuring Cross Sections of Importance to Nuclear Pumping,” SAND-76–5338, Sandia Laboratories, Albuquerque, NM (1975).Google Scholar
  8. 8.
    D. C. Lorents, M. V. McCusher and C. K. Rhodes, “Nuclear Fission Fragment Excitation of Electronic Transition Laser Media,” Proc. 3rd Conf. Uranium Plasmas and Applications, Princeton Univ., Princeton, NJ (June 1976).Google Scholar
  9. 9.
    E. L. Maceda and G. H. Miley, “Non-Maxwellian Electron Excitation in Helium,” Proe. 27th Annual Gaseous Electronics Conf., Houston, TX (1974) p. 118.Google Scholar
  10. 10.
    G. R. Shipman, R. A. Walters and R. T. Schneider, “Population Inversions in Fission Fragment Excited Helium,” Trans. Am. Nucl. Soc., 17, San Francisco (1973).Google Scholar
  11. 11.
    A. K. Bhattacharya, J. T. Verdeyen, F. T. Adler and L. Goldstein, “Microwave Measurement of Dynamic Reactor Respons,” Appl. Phys. Letters, 5, 242 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    G. H. Miley, J. T. Verdeyen and W. E. Wells, “Direct Nuclear Pumped Lasers,” Paper BB-1, Proe. 28th Gaseous Electronics Conf., Univ. of MO at Rolla (1975).Google Scholar
  13. Also see G. H. Miley and W. E. Wells, “Direct Nuclear Pumped (DNP) Laser,” Paper B-5, IXth Int. Conf. on Quantum Electronics, Amsterdam, The Netherlands, (1976).Google Scholar
  14. 13.
    L. O. Herwig, “Prel. Studies Concerning Nuclear-Pumping of Gas Laser Systems,” C-110053–5, United Aircraft Research Labs., East Hartford, Conn. (1964). Also see Trans. Am. Nuol. Soc., 7, 131 (1964).Google Scholar
  15. 14.
    H. H. Heimick, J. L. Fuller and R. T. Schneider, “Direct Nuclear Pumping of a Helium-Xenon Laser,” Appl. Phys. Letters, 26, 181 (1974).Google Scholar
  16. 15.
    R. DeYoung, “A Direct Nuclear Pumped Neon-Nitrogen Laser,” Ph.D. Thesis, Nucl. Eng. Program, U. of 111., Urbana, IL (1975).Google Scholar
  17. 16.
    R. DeYoung, W. E. Wells, G. H. Miley and J. T. Verdeyen, “Direct Nuclear Pumping of an Ne-N2 Laser,” Appl. Phys. Letters, 28, 519 (May 1976).ADSCrossRefGoogle Scholar
  18. 17.
    N. W. Jalufka, R. J. DeYoung, F. Hohl and M. D. Williams, “A Nuclear Pumped 3He-Ar Laser Excited by the 3He(n,p)3H Reaction,” Appl. Phys. Letters, 29, 188 (1976).ADSCrossRefGoogle Scholar
  19. 18.
    M. A. Akerman, “Demonstration of the First Visible Wavelength DNPL,” Ph.D. Thesis, Nucl. Eng. Program, U. of 111., Urbana, IL (1976).Google Scholar
  20. 19.
    M. A. Akerman, G. H. Miley and D. A. McArthur, “Study of a Direct Nuclear Pumped, He-Hg Laser,” Twenty-Ninth Annual Gaseous Electronics Conf., Cleveland, OH (Oct. 1976). Also to be published, Appl. Phys. Letters.Google Scholar
  21. 20.
    R. S. Stone, H. P. Sleeper, R. H. Stahl, and G. West, “Transient Behavior of TRIGA, a Zirconium-Hydride, Water-Moderated Reactor,” Nuol. Sei. Eng., 6, 235 (1959).Google Scholar
  22. 21.
    L. L. Bonzon and J. A. Snyder, “Sandia Pulsed Reactor II (SPRII) Experiments Manual,” SLA-73–0551, Sandia Laboratories, Albuquerque, N. Mex. (1973).Google Scholar
  23. 22.
    G. H. Miley, N. Tsoulfanidis, and P. K. Doshi, “Pulse-Propagation Experiments with a Reactor Source,” Proceedings, Symposium on Neutron Noise Wave and Pulse Propagation, U. of Fla., AEC Symposium Series 9, U. S. Department of Commerce, Springfield, VA, 117–134 (May 1967).Google Scholar
  24. 23.
    G. H. Miley, “Reactor Neutron-Pulse Propagation,” Nuol. Soi. Eng., 21, 357 (1965).Google Scholar
  25. 24.
    J. C. Guyot, G. H. Miley, J. T. Verdeyen and T. Ganley, “On Gas Laser Pumping Via Nuclear Radiations,” Trans, of the Symp. of Research on Uranium Plasmas and Their Teohnologioal Application, NASA SP-236 (1970).Google Scholar
  26. 25.
    G. H. Miley, “Nuclear Radiation Effects on Gas Lasers,” in Laser Interactions, (Schwarz and Hora, eds.), Plenum Press, pp. 43–57 (1972).Google Scholar
  27. 26.
    G. H. Miley, J. T. Verdeyen, T. Ganley, J. Guyot and P. Thiess, “Pumping and Enhancement of Gas Lasers via Ion Beams,” Ilth Symp. on Electron3 Ion and Laser Beam Technology (R.F.M. Thomley, ed.), San Francisco Press, Inc. (1971).Google Scholar
  28. 27.
    G. H. Miley, W. E. Wells, M. A. Akerman and J. Anderson, “Recent Nuclear Pumped Laser Results,” 3rd Conf. Uranium Plasmas and Applications, Princeton University, Princeton, N.J. (1976).Google Scholar
  29. 28.
    T. Ganley, J. T. Verdeyen and G. H. Miley, “Enhancement of CO2 Laser Power and Efficiency by Neutron Irradiation,” Appl. Phys. Letters, 18, 568 (June 1971).ADSCrossRefGoogle Scholar
  30. 29.
    R. J. DeYoung, W. E. Wells and G. H. Miley, “Enhanced Output from He-Ne Laser by Nuclear Preionization,” 1974 Int. IEEE Electron Devices Meeting, Washington, DC (Dec. 1974).Google Scholar
  31. 30.
    R. J. DeYoung, E. Seckinger, W. E. Wells and G. H. Miley, “Studies of Nuclear Radiation Enhancement and Pumping of Noble Gas Lasers,” Paper 2A10, 1974 Int. IEEE Conf. on Plasma Sdence, Univ. of TN, Knoxville, TN (1974).Google Scholar
  32. 31.
    R. J. DeYoung, M. A. Akerman, W. E. Wells and G. H. Miley, “Studies of Radiation-Induced Laser Plasmas,” Paper 3D2, 1975 Int. Conf. on Plasma Science3 Univ. of MIj Ann Arbor5 MI3 75CH0987–8-NPS, IEEE3 New York City, NW (1975).Google Scholar
  33. 32.
    L. N. Tunitskii and E. M. Cherkasov, “New Oscillations in the Spectra of NI and Cl,” Sov. Phys.-Tech. Phys., 11 1696 (1969).Google Scholar
  34. 33.
    R. J. DeYoung, W. E. Wells and G. H. Miley, “Optical Gain in a Neutron-Induced 3He-Ne-O2 Plasma,” Appl. Phys. Letters3 233 194 (1976).CrossRefGoogle Scholar
  35. 34.
    G. Cooper, J. T. Verdeyen, W. Wells and G. H. Miley, “The Pumping Mechanism for the Neon-Nitrogen Nuclear-Excited Laser,” Proceedings3 3rd Conf. Uranium Plasmas and Application3 Princeton University, Princeton, N.J. (1976).Google Scholar
  36. 35.
    E. L. Seckinger, “Study of the Neon-Oxygen Laser under Heavy Particle Bombardment,” M. S. Thesis, Nucl. Eng. Program, Univ. of Illinois, Urbana, IL (1974).Google Scholar
  37. 36.
    R. J. DeYoung, W. E. Wells and G. H. Miley, “Lasing in a Ternary Mixture of He-Ne-O2 at Pressures up to 200 Torr,” J. of Appl. Phys. 47Google Scholar
  38. 37.
    W. R. Bennett, W. L. Faust, R. A. McFarlane and C. K. N. Patel, “Dissociative Excitation Transfer and Optical Maser Oscillation in Ne-O2 and Ar-O2 rf Discharges,” Phys. Rev. Ltr. 8 470 (1962).ADSCrossRefGoogle Scholar
  39. 38.
    J. R. Rusk, R. D. Cook, J. W. Eerkins, J. A. DeJuren, and B. T. Davis, “Research on Direct Nuclear Pumping of Gas Lasers,” Report AFAL-TR 68–256, Northrup Systems Laboratories, Hawthorn, CA (1968).Google Scholar
  40. 39.
    M. S. Feld, B. J. Feldman, A. Javan and L. H. Domask, “Selective Reabsorption Leading to Multiple Oscillations in the 8446 K Atomic Oxygen Laser,” Phys. Rev. A, 7, 257 (1973).ADSCrossRefGoogle Scholar
  41. 40.
    H. Wieder, R. A. Meyers, C. L. Fisher, C. G. Powell and J. Colombo, “Fabrication of Wide Bore Hollow Cathode Hg+ Lasers,” R.S.I., 38, No. 10, p. 1538 (Oct. 1967).Google Scholar
  42. 41.
    M. A. Akerman, W. E. Wells and G. H. Miley, “Charge Exchange Phenomena in a Nuclear Radiation Produced He-Hg Plasma,” 1976 IEEE Int. Conf. on Plasma Soienoe, ZClO, Univ. of TX at Austin, 76CHl083–5-NPS, IEEE, N.Y. (1976).Google Scholar
  43. 42.
    R. L. Byer, W. E. Bell, E. Hodges and A. L. Bloom, “Laser Emission in Ionized Mercury: Isotope Shift, Linewidth, and Precise Wavelength,” J. Opt. Soo. of Am., 55, 1598 (1965).Google Scholar
  44. 43.
    V. H. Andriakhin, V. V. Vasilfnov, S. S. Krasilnikov, V. D. Pismennyi and V. E. Khvostinov, “Radiation of Hg-He Gas Mixture Bombarded by a Neutron Stream, ” JETP Letters, 12, 2, 58 (1970).ADSGoogle Scholar
  45. 44.
    D. J. Dyson, “Mechanism of Population Inversion at 6149 A in the Mercury-Ion Laser, Nature”, 207, 361 (1965).ADSCrossRefGoogle Scholar
  46. 45.
    K. Thom and R. T. Schneider, “Nuclear Pumped Gas Lasers,” AIAA Journal, IO, 400 (1972).Google Scholar
  47. 46.
    R. T. Schneider, Karlheinz Thom and H. H. Helmick, “Lasers from Fission,” Paper 75–015 Int. Astronautioal Federation, XXVIth Congress, Lisbon, Spain, 21–27 Sept. 1975.Google Scholar
  48. 47.
    Karlheinz Thorn, “High Grade Power from Fissioning Gases,” NASA Report, NASA Headquarters, Washington, DC (1976).Google Scholar
  49. 48.
    G. H. Miley, Fusion Energy Conversion, American Nuclear Society, Hinsdale, IL (1976).Google Scholar
  50. 49.
    D. H. Nguyen and A. E. Fuhs, Nuolear Tumped Laser: Report of Workshop on Direct Nuclear Pumping of Lasers, Naoal Postgraduate School, Monterey, CA(April 1976).Google Scholar
  51. 50.
    D. A. McArthur, T. R. Schmidt, P. B. Tollefsrud and J. V. Walker, “Preliminary Designs for Large (y 1 MJ) Reactor-Driven Laser Systems,” IEEE Int. Conf. Plasma Sci., Vniv. of MI, Ann Arbor, MI 75CH0987–8-NPS, IEEE, NYC, NY (May 1975).Google Scholar
  52. 51.
    T. R. Schmidt and D. A. McArthur, “Neutronics Analysis for a Subcritical Nuclear Laser Driver Excited by a Fast Pulse Reactor, SAND-76 0139, Sandia Laboratories, Albuquerque, NM (1976).Google Scholar
  53. 52.
    H. Kurstedt and G. H. Miley, “Short-Interval Series Pulsing— Experimental and Numerical Experiments, ” Nuolear Technology, 40, 168 (1971).Google Scholar
  54. 53.
    P. B. Tollefsrud, “A High Energy Flowing Nuclear Laser,” in Report of Workshop on Direct Nuclear Pumping of Lasers, Naval Postgraduate School, Monterey, CA (April 1976).Google Scholar
  55. 54.
    F. Hohl, NASA-Langley Research Laboratory, Hampton, VA, private communication (1976).Google Scholar
  56. 55.
    K. A. Brueckner, “Assessemnt of Laser-Driven Fusion,” EPRI ER-203 Electric Power Research Institute, Palo Alto, CA (Sept. 1976).Google Scholar
  57. 56.
    G. H. Miley, “Direct Pumping of Lasers by Fusion Reactors,” Trans. Am. Nucl. Soc., 15, 633 (1972).Google Scholar
  58. 57.
    W. E. Wells, “Laser-Pellet Fusion by Energy Feedback to a Direct Nuclear Pumped Auxiliary Laser,” Paper 3D4, Proe. 1975 IEEE Conf. Plasma Science, JJniv. of MI, Ann Arbor, MI 75CH0987–8-NPS, IEEE, NYC, NY (1975).Google Scholar
  59. 58.
    D. A. McArthur and J. V. Walker, “Nuclear-Pumped Laser Concepts for Laser Fusion,” SAND-76–5316, Sandia Laboratories, Albuquerque NM (1976).Google Scholar
  60. 59.
    G. H. Miley, S. Sutherland, C. Choi and J. Glowienka, “A Laser- Fusion Concept Using D-D-T Pellets with DNP Laser Feedback System, submitted, IEEE/OSA Conference, Washington, DC (June 1977).Google Scholar
  61. 60.
    G. H. Miley, unpublished calculations, May 1976.Google Scholar
  62. 61.
    J. Rand McNally Jr., and R. D. Sharp, “Advanced Fuels for In- ertial Confinement,” Nucl. Fusion, 16, 868 (1976).ADSCrossRefGoogle Scholar
  63. 62.
    L. C. Steinhauer, “A Feasibility Study of a Linear Laser Heated Solenoid Fusion Reactor,” EPRI ER-171, Electric Power Research Institute, Palo Alto, CA (Feb. 1976).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • G. H. Miley
    • 1
  1. 1.University of IllinoisNuclear Engineering ProgramUrbanaUSA

Personalised recommendations