Skip to main content

Molecular Biology and Bacterial Phylogeny

  • Chapter
Evolutionary Biology

Abstract

The present day microorganisms are the result of complex evolutionary processes. If these events were known, a three- or multidimensional phylogenetic tree could be constructed with time as one of the axes. Its transverse section with the plane of the present day moment would provide us with a phylogenetic classification. Bacterial classification is mainly built on morphological, physiological, and biochemical features. When many of these data are compared by numerical (or Adansonian) analysis, they provide a fair picture of the degree of relatedness of many bacteria. However, it is nearly impossible to project this picture back into the past because numerical taxonomy covers at most some 20 percent of the bacterial genome, and orthodox bacterial taxonomy covers even less. Furthermore, paleontological, embryological, and comparative anatomical data are lacking for bacteria. Therefore, the evolutionary tree of bacteria remains largely invisible, if one uses only phenotypic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DNA:

deoxyribonucleic acid

RNA:

ribonucleic acid

A:

adenine

T:

thymine

G:

guanine

C:

cytosine

percent GC:

average molar percent guanine + cytosine

UV:

ultraviolet light

hµ:

radiant energy

NAD and NADH:

nicotinamide adenine dinucleotide and reduced form

NADP and NADPH:

nicotinamide adenine dinucleotide phosphate and reduced form

ATP:

adenosine triphosphate

G6P:

glucose-6-phosphate

6PG:

gluconate-6-phosphate

References

  • Aaronson, S., and S. H. Hutner. 1966. Biochemical markers and microbial phylogeny. Quart. Rev. Biol., 41: 13–46.

    Article  CAS  Google Scholar 

  • Abelson, P. H. 1959. Paleobiochemistry and organic geochemistry. Fortschr. Chem. Organ. Naturst., 17: 379–403.

    CAS  Google Scholar 

  • Barghoorn, E. S., and S. A. Tyler. 1965. Microorganisms from the Gunflint chert. Science, 147: 563–577.

    Article  PubMed  CAS  Google Scholar 

  • Beerstecher, E. JR. 1954. Petroleum Microbiology, New York, Elsevier Press.

    Google Scholar 

  • Berkner, L. V., and L. C. Marshall. 1965. History of major atmospheric components. Proc. Nat. Acad. Sci. USA, 53: 1215–1225.

    Article  CAS  Google Scholar 

  • Berns, K. I., and C. A. Thomas. 1965. Isolation of high molecular weight DNA from Hemophilus influenzae. J. Molec. Biol., 11: 476–490.

    Article  PubMed  CAS  Google Scholar 

  • Bien, E., and W. Schwartz. 1965., Geomikrobiologische Untersuchungen. VI. Ueber das Vorkommen konservierter toter und lebender Bakterienzellen in Salzgesteinen. Z. Allg. Mikrobiol., 5:185–205.

    Google Scholar 

  • Bisset, K. A. 1962. The phylogenetic concept in bacterial taxomy. InAinsworth, G. C., and P. H. A. Sneath, Microbial Classification. 12th Sympos. Soc. Gen. Microbiol., 361–373, Cambridge, University Press.

    Google Scholar 

  • Bolton, E. T., R. J. Britten, T. J. Bijers, D. B. Cowie, B. Hoyer, Y. Kato, B. J. Mccarthy, M. Miranda, and R. B. Roberts. 1963–64. Carnegie Inst. Wash. Year Book, 63:366–397.

    Google Scholar 

  • Bolton, E. T., R. J. Britten, D. B. Cowie, R. B. Roberts, P. Szafranski, and M. J. Waring. 1964–65. Carnegie Inst. Wash. Year Book, 64:313–345.

    Google Scholar 

  • Cairns, J. 1963. The chromosome of Escherichia coli. Cold Spring Harbor Sympos. Quant. Biol., 28: 43–45.

    Google Scholar 

  • Caldwell, P. J., and C. Hinshelwood. 1950. Nucleic acid content of Bacterium lactis aerogenes. J. Chem. Soc., 1415–1418.

    Google Scholar 

  • Cloud, P. E. 1965. Significance of the Gunflint (Precambrian) Microflora. Science, 148: 27–35.

    Article  PubMed  Google Scholar 

  • Cummins, C. S. 1962. Chemical composition and antigenic structure of cell walls of Corynebacterium, Mycobacterium, Nocardia, Actinomyces, and Arthrobacter. J. Gen.,Microbiol., 28: 35–50.

    CAS  Google Scholar 

  • Dauvillier, A. 1965. The Photochemical Origin of Life, New York, Academic Press.

    Google Scholar 

  • de Beer, G. 1964. Atlas of Evolution, London, Th. Nelson and Sons.

    Google Scholar 

  • De Ley, J. 1960. Comparative carbohydrate metabolism and localization of enzymes in Pseudomonasand related microorganisms. J. Appl. Bacteriol., 23: 400–441.

    Article  Google Scholar 

  • De Ley, J. 1961. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol., 24: 31–50.

    Google Scholar 

  • De Ley, J. 1962. Comparative biochemistry and enzymology in bacterial classification. In Ainsworth, G. C., and P. H. A. Sneath, Microbial Classification. 12th Sympos. Soc. Gen. Microbiol. 164–195, Cambridge, University Press.

    Google Scholar 

  • De Ley, J. 1964. Pseudomonas and related genera. Ann. Rev. Microbiol., 18:17–46.

    Google Scholar 

  • De Ley, J. 1964a. Effect of mutation on DNA composition of some bacteria. Antonie Leeuwenhoek, 30: 281–288.

    Article  Google Scholar 

  • De Ley, J., and S. Friedman. 1964. Deoxyribonucleic acid hybrids of acetic acid bacteria. J. Bacteriol., 88: 937–945.

    Google Scholar 

  • De Ley, J. and S. Friedman. 1965. Similarity of Xanthomonasand Pseudomonasdeoxyribonucleic acid. J. Bacteriol., 89: 1306–1309.

    Google Scholar 

  • De Ley, J., and I. W. Park. 1966. Molecular biological taxonomy of some freeliving nitrogen-fixing bacteria. Antonie Leeuwenhoek, 32: 6–16.

    Article  PubMed  Google Scholar 

  • De Ley, J., K. Kersters, and I. W. Park. 1966. Molecular biological and taxonomic studies on Pseudomonas halocrenaea, a bacterium from Permian salt deposits. Antonie Leeuwenhoek, 32: 315–31.

    Article  PubMed  Google Scholar 

  • De Ley, J., I. W. Park, R. Tijtgat, and J. Van Ermengem. 1966. DNA homology and taxonomy of Pseudomonasand Xanthomonas. J. Gen. Microbiol., 42: 43–56.

    PubMed  Google Scholar 

  • Dennis, E. S., and R. G. Wake. 1966. Autoradiography of the Bacillus subtilischromosome. J. Mol. Biol., 15: 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Desikachary, T. V. 1959. Cyanophyta. New Delhi, Indian Council of Agr. Research.

    Google Scholar 

  • Dole, M. 1965. Natural history of oxygen. InOxygen, 5–27, Boston, Little Brown and Co.

    Google Scholar 

  • Dombrowski, H. 1960. Balneologische Untersuchungen der Nauheimer Quellen. II. Pseudomonas halocrenaea. (nova species). Z. Bakt. Parask. Infekt. Hyg., Orig., 178: 83–90.

    CAS  Google Scholar 

  • Dombrowski, H. 1963a. Bacteria from paleozoic salt deposits. Ann. N.Y. Acad. Sci., 108: 453–460.

    Article  CAS  Google Scholar 

  • Dombrowski, H.. 1963b. Organismes vivants du paléozoique. La Presse Médicale., 71:1, 148–1, 152.

    Google Scholar 

  • Duc-Nguyen, H., and L. L. Weed. 1964. D-Ornithine as a constituent of a bacterial cell wall. J. Biol. Chem., 239: 3372–3376.

    PubMed  CAS  Google Scholar 

  • Echlin, P., and I. Morris. 1965. The relationship between blue-green algae and bacteria. Biol. Rev., 40: 143–187.

    CAS  Google Scholar 

  • Erwin, J., and K. Bloch. 1964. Biosynthesis of unsaturated fatty acids in microorganisms. Science, 143: 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  • Fogg, G. E. 1956. The comparative physiology and biochemistry of the blue-green algae. Bact. Rev., 20: 148–165.

    CAS  Google Scholar 

  • Freeze, E. 1962. On the evolution of the base composition of DNA. J. Theor. Biol., 3: 82–101.

    Google Scholar 

  • Frenkel, A., H. Gaffron, and E. H. Battley. 1950. Photosynthesis and photo-reproduction by the blue-green alga Synechococcus elongata. Näg. Biol. Bull., 99: 157–162.

    Article  CAS  Google Scholar 

  • Friedman, S., and J. De Ley. 1965. “Genetic species” concept in Xanthomonas. J. Bacteriol., 89:95–100.

    Google Scholar 

  • Fritsch, F. E. 1965. The structure and reproduction of the algae. Vol. 2. Cambridge, University Press.

    Google Scholar 

  • Gause, G. F. 1966. Microbial Models of Cancer Cells. Amsterdam, North Holland Publishing Co.

    Google Scholar 

  • Glaessner, M. F. 1962. Principles of Micropaleontology. London, Hafner Publishing Co.

    Google Scholar 

  • Graham, P. H. 1964. The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. J. Gen. Microbiol., 35: 511–517.

    Google Scholar 

  • Heberlein, G. T., J. De Ley, and R. Tijtgat. 1967. Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J. Bacteriol, 94: 116–124.

    PubMed  CAS  Google Scholar 

  • Holland, H. D. 1962. Model for the evolution of the earth’s atmosphere. InA. E. J. Engel, Petrological Studies, 447–477. New York, Geol. Soc. of America.

    Google Scholar 

  • Holland, H. D. 1965. The history of ocean water and its effect on the chemistry of the atmosphere. Proc. Nat. Acad. Sci. USA, 53: 1173–1183.

    Article  CAS  Google Scholar 

  • Horowitz, N. H., and H. Mac Leod. 1960. The DNA content of Neurosporanuclei. Microbial Genet. Bull. 17: 6.

    Google Scholar 

  • Hutchinson, G. E. 1944. Nitrogen in the bio-geochemistry of the atmosphere. Amer. Sci., 32: 178–195.

    CAS  Google Scholar 

  • Kelly, A. P., and L. L. Weed. 1965. (as quoted by Gause, G. F. 1966. ) Microbial Models of Cancer Cells. Amsterdam, North Holland Publishing Co.

    Google Scholar 

  • Kluyver, A. J., and C. B. Van Niel. 1936. Prospects for a natural system of classification of bacteria. Zbl. Bakt. [Orig.], 94: 369–403.

    Google Scholar 

  • Knight, B. C. 1945. Growth factors in microbiology. Some wider aspects of nutritional studies with micro-organisms. Vitamins and Hormones, 3: 105–228.

    Article  CAS  Google Scholar 

  • Kornberg, A. 1965. Synthesis in DNA-like polymers de novo or by reiterative replication. InBryson, V., and H. J. Vogel, Evolving Genes and Proteins, 403417, New York, Academic Press.

    Google Scholar 

  • Kuznetsov, S. I., M. V. Ivanov, and N. N. Lyalikova. 1963. Introduction to Geological Microbiology, New York, McGraw Hill.

    Google Scholar 

  • Lewin, R. A. 1962. Physiology and Biochemistry of Algae, New York, Academic Press.

    Google Scholar 

  • Lwoff, A. 1943. L’évolution physiologique. Etude des pertes de fonctions chez les microorganismes, Paris, Hermann et Cie.

    Google Scholar 

  • Lysenko, O. 1961. Pseudomonas-an attempt at a general classification. J. Gen. Microbiol., 25:379–408.

    Google Scholar 

  • Marmur, J., E. Seaman, and J. Levine. 1963. Interspecific transformation in Bacillus. J. Bacteriol., 85: 461–467.

    PubMed  CAS  Google Scholar 

  • Massie, H. R., and B. H. Zimm. 1965. Molecular weight of DNA in the chromosomes of E. coliand B. subtilis. Proc. Nat. Acad. Sci. USA, 54: 1636–1641.

    Article  PubMed  CAS  Google Scholar 

  • Mccarthy, B. J., and E. T. Bolton. 1963. An approach to the measurement of genetic relatedness among organisms. Proc. Nat. Acad. Sci. USA, 50: 156–162.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. L. 1957. The formation of organic compounds on the primitive earth. InOparin, A. I., The Origin of Life on Earth, 73–85, Moscow, Publ. House Acad. Sci. USSR.

    Google Scholar 

  • Morowitz, H. J., M. E. Tourtelotte, W. R. Guild, E. Castro, C. Woese, and R. C. Cleverdon. 1962. The chemical composition and submicroscopic morphol- ogy of Mycoplasma gallisepticum, avian PPLO 5969. J. Molec. Biol., 4: 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Myers, G. E., and R. G. L. Mc Cready. 1966. Bacteria can penetrate rock. Canad. J. Microbiol., 12: 477–484.

    Google Scholar 

  • Nakamura, H. 1938. Ueber die Kohlensäureassimilation bei niederen Algen in Anwesenheit des Schwefelwasserstoffs. Acta Phytochim. (Japan), 10: 271–281.

    CAS  Google Scholar 

  • Ogur, M., S. Minckler, and D. O. Mcclary. 1953. Deoxyribonucleic acid (DNA) and the budding cycle in the yeasts. J. Bact., 66: 642–645.

    PubMed  CAS  Google Scholar 

  • Ogur, M., S. Minckler, and D. O. Mcclary. 1953. Deoxyribonucleic acid (DNA) and the budding cycle in the yeasts. J. Bact., 66: 642–645.

    PubMed  CAS  Google Scholar 

  • Ruffen, M. G. 1962. The geological aspects of the origin of life on earth. Amsterdam, Elsevier.

    Google Scholar 

  • Schildkraut, C. L., J. Marmur, and P. Doty. 1961. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. Molec. Biol., 3: 595–617.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J. W., E. S. Barghoorn, M. D. Maser, and R. O. Gordon. 1965. Electron microscopy of fossil bacteria two billion years old. Science, 149:1365–1367. SERENKOV, G. P. 1962. Nucleic acids and the evolution in the algal group. Izs. Akad. Nauk SSSR, Ser. Biol., 27: 857–868.

    Google Scholar 

  • Siegel, S. M., and C. Giumarro. 1966. On the culture of a microorganism similar to the Precambrian microfossil Kakabekia umbellataBarghoorn in NI-13-rich atmospheres. Proc. Nat. Acad. Sci. USA, 55: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, S. M., G. Renwick, O. Daly, C. Giumarro, G. Davis, and L. Halpern. 1965. The survival capabilities and the performance of earth organisms in simulated extraterrestrial environments. InMamikunian, G., and M. H. Briggs, Exobiology, 119–178, London, Pergamon Press.

    Google Scholar 

  • Sneath, P. H. A. 1962. Longevity of microorganisms. Nature (London), 195: 643–646.

    Article  CAS  Google Scholar 

  • Sneath, P. H. A. 1964. The limits of life. Discovery, 25: 20–24.

    Google Scholar 

  • Sneath, P. H. A., and S. T. Cowan. 1958. An electrotaxonomic survey of bacteria. J. Gen. Microbiol., 19: 551–565.

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y., and C. B. Van Niel. 1962. The concept of a bacterium. Arch. Mikrobiol., 42: 17–35.

    Article  CAS  Google Scholar 

  • Sueoka, N. 1961. Variation and heterogeneity of base composition of deoxyribonucleic acids; a compilation of old and new data. J. Molec. Biol., 3: 31–40.

    Article  CAS  Google Scholar 

  • Sueoka, N. 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Nat. Acad. Sci. USA, 48: 582–592.

    Article  PubMed  CAS  Google Scholar 

  • Symposium on the evolution of the earth’s atmosphere. 1965. Proc. Nat. Acad. Sci. USA, 53: 1169–1226.

    Article  Google Scholar 

  • Takahashi, H., H. Saito, and Y. Ikeda. 1966. Genetic relatedness of spore bearing bacilli studied by the DNA agar method. J. Gen. Appl. Microbiol., 12: 113–118.

    Article  CAS  Google Scholar 

  • Tasnadi-Kubacska, A. 1962. Paläo-Pathologie. Jena, G. Fischer Verlag.

    Google Scholar 

  • Vallentyne, J. R. 1965. Two aspects of geochemistry of amino acids. InFox, S. W. The Origin of Prebiological Systems, 105–120. New York, Academic Press.

    Google Scholar 

  • Weed, L. L. 1963. Effects of copper on Bacillus subtilis. J. Bacteriol., 85: 1003–1010.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press, New York

About this chapter

Cite this chapter

De Ley, J. (1968). Molecular Biology and Bacterial Phylogeny. In: Dobzhansky, T., Hecht, M.K., Steere, W.C. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8094-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8094-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8096-2

  • Online ISBN: 978-1-4684-8094-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics