Molecular Biology and Bacterial Phylogeny

  • J. De Ley


The present day microorganisms are the result of complex evolutionary processes. If these events were known, a three- or multidimensional phylogenetic tree could be constructed with time as one of the axes. Its transverse section with the plane of the present day moment would provide us with a phylogenetic classification. Bacterial classification is mainly built on morphological, physiological, and biochemical features. When many of these data are compared by numerical (or Adansonian) analysis, they provide a fair picture of the degree of relatedness of many bacteria. However, it is nearly impossible to project this picture back into the past because numerical taxonomy covers at most some 20 percent of the bacterial genome, and orthodox bacterial taxonomy covers even less. Furthermore, paleontological, embryological, and comparative anatomical data are lacking for bacteria. Therefore, the evolutionary tree of bacteria remains largely invisible, if one uses only phenotypic features.


Blue Green Alga Acetic Acid Bacterium Nucleotide Pair Evolutionary Divergency Evolution Ally 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



deoxyribonucleic acid


ribonucleic acid









percent GC

average molar percent guanine + cytosine


ultraviolet light

radiant energy


nicotinamide adenine dinucleotide and reduced form


nicotinamide adenine dinucleotide phosphate and reduced form


adenosine triphosphate






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, S., and S. H. Hutner. 1966. Biochemical markers and microbial phylogeny. Quart. Rev. Biol., 41: 13–46.CrossRefGoogle Scholar
  2. Abelson, P. H. 1959. Paleobiochemistry and organic geochemistry. Fortschr. Chem. Organ. Naturst., 17: 379–403.Google Scholar
  3. Barghoorn, E. S., and S. A. Tyler. 1965. Microorganisms from the Gunflint chert. Science, 147: 563–577.PubMedCrossRefGoogle Scholar
  4. Beerstecher, E. JR. 1954. Petroleum Microbiology, New York, Elsevier Press.Google Scholar
  5. Berkner, L. V., and L. C. Marshall. 1965. History of major atmospheric components. Proc. Nat. Acad. Sci. USA, 53: 1215–1225.CrossRefGoogle Scholar
  6. Berns, K. I., and C. A. Thomas. 1965. Isolation of high molecular weight DNA from Hemophilus influenzae. J. Molec. Biol., 11: 476–490.PubMedCrossRefGoogle Scholar
  7. Bien, E., and W. Schwartz. 1965., Geomikrobiologische Untersuchungen. VI. Ueber das Vorkommen konservierter toter und lebender Bakterienzellen in Salzgesteinen. Z. Allg. Mikrobiol., 5:185–205.Google Scholar
  8. Bisset, K. A. 1962. The phylogenetic concept in bacterial taxomy. InAinsworth, G. C., and P. H. A. Sneath, Microbial Classification. 12th Sympos. Soc. Gen. Microbiol., 361–373, Cambridge, University Press.Google Scholar
  9. Bolton, E. T., R. J. Britten, T. J. Bijers, D. B. Cowie, B. Hoyer, Y. Kato, B. J. Mccarthy, M. Miranda, and R. B. Roberts. 1963–64. Carnegie Inst. Wash. Year Book, 63:366–397.Google Scholar
  10. Bolton, E. T., R. J. Britten, D. B. Cowie, R. B. Roberts, P. Szafranski, and M. J. Waring. 1964–65. Carnegie Inst. Wash. Year Book, 64:313–345.Google Scholar
  11. Cairns, J. 1963. The chromosome of Escherichia coli. Cold Spring Harbor Sympos. Quant. Biol., 28: 43–45.Google Scholar
  12. Caldwell, P. J., and C. Hinshelwood. 1950. Nucleic acid content of Bacterium lactis aerogenes. J. Chem. Soc., 1415–1418.Google Scholar
  13. Cloud, P. E. 1965. Significance of the Gunflint (Precambrian) Microflora. Science, 148: 27–35.PubMedCrossRefGoogle Scholar
  14. Cummins, C. S. 1962. Chemical composition and antigenic structure of cell walls of Corynebacterium, Mycobacterium, Nocardia, Actinomyces, and Arthrobacter. J. Gen.,Microbiol., 28: 35–50.Google Scholar
  15. Dauvillier, A. 1965. The Photochemical Origin of Life, New York, Academic Press.Google Scholar
  16. de Beer, G. 1964. Atlas of Evolution, London, Th. Nelson and Sons.Google Scholar
  17. De Ley, J. 1960. Comparative carbohydrate metabolism and localization of enzymes in Pseudomonasand related microorganisms. J. Appl. Bacteriol., 23: 400–441.CrossRefGoogle Scholar
  18. De Ley, J. 1961. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol., 24: 31–50.Google Scholar
  19. De Ley, J. 1962. Comparative biochemistry and enzymology in bacterial classification. In Ainsworth, G. C., and P. H. A. Sneath, Microbial Classification. 12th Sympos. Soc. Gen. Microbiol. 164–195, Cambridge, University Press.Google Scholar
  20. De Ley, J. 1964. Pseudomonas and related genera. Ann. Rev. Microbiol., 18:17–46.Google Scholar
  21. De Ley, J. 1964a. Effect of mutation on DNA composition of some bacteria. Antonie Leeuwenhoek, 30: 281–288.CrossRefGoogle Scholar
  22. De Ley, J., and S. Friedman. 1964. Deoxyribonucleic acid hybrids of acetic acid bacteria. J. Bacteriol., 88: 937–945.Google Scholar
  23. De Ley, J. and S. Friedman. 1965. Similarity of Xanthomonasand Pseudomonasdeoxyribonucleic acid. J. Bacteriol., 89: 1306–1309.Google Scholar
  24. De Ley, J., and I. W. Park. 1966. Molecular biological taxonomy of some freeliving nitrogen-fixing bacteria. Antonie Leeuwenhoek, 32: 6–16.PubMedCrossRefGoogle Scholar
  25. De Ley, J., K. Kersters, and I. W. Park. 1966. Molecular biological and taxonomic studies on Pseudomonas halocrenaea, a bacterium from Permian salt deposits. Antonie Leeuwenhoek, 32: 315–31.PubMedCrossRefGoogle Scholar
  26. De Ley, J., I. W. Park, R. Tijtgat, and J. Van Ermengem. 1966. DNA homology and taxonomy of Pseudomonasand Xanthomonas. J. Gen. Microbiol., 42: 43–56.PubMedGoogle Scholar
  27. Dennis, E. S., and R. G. Wake. 1966. Autoradiography of the Bacillus subtilischromosome. J. Mol. Biol., 15: 435–439.PubMedCrossRefGoogle Scholar
  28. Desikachary, T. V. 1959. Cyanophyta. New Delhi, Indian Council of Agr. Research.Google Scholar
  29. Dole, M. 1965. Natural history of oxygen. InOxygen, 5–27, Boston, Little Brown and Co.Google Scholar
  30. Dombrowski, H. 1960. Balneologische Untersuchungen der Nauheimer Quellen. II. Pseudomonas halocrenaea. (nova species). Z. Bakt. Parask. Infekt. Hyg., Orig., 178: 83–90.Google Scholar
  31. Dombrowski, H. 1963a. Bacteria from paleozoic salt deposits. Ann. N.Y. Acad. Sci., 108: 453–460.CrossRefGoogle Scholar
  32. Dombrowski, H.. 1963b. Organismes vivants du paléozoique. La Presse Médicale., 71:1, 148–1, 152.Google Scholar
  33. Duc-Nguyen, H., and L. L. Weed. 1964. D-Ornithine as a constituent of a bacterial cell wall. J. Biol. Chem., 239: 3372–3376.PubMedGoogle Scholar
  34. Echlin, P., and I. Morris. 1965. The relationship between blue-green algae and bacteria. Biol. Rev., 40: 143–187.Google Scholar
  35. Erwin, J., and K. Bloch. 1964. Biosynthesis of unsaturated fatty acids in microorganisms. Science, 143: 1006–1012.PubMedCrossRefGoogle Scholar
  36. Fogg, G. E. 1956. The comparative physiology and biochemistry of the blue-green algae. Bact. Rev., 20: 148–165.Google Scholar
  37. Freeze, E. 1962. On the evolution of the base composition of DNA. J. Theor. Biol., 3: 82–101.Google Scholar
  38. Frenkel, A., H. Gaffron, and E. H. Battley. 1950. Photosynthesis and photo-reproduction by the blue-green alga Synechococcus elongata. Näg. Biol. Bull., 99: 157–162.CrossRefGoogle Scholar
  39. Friedman, S., and J. De Ley. 1965. “Genetic species” concept in Xanthomonas. J. Bacteriol., 89:95–100.Google Scholar
  40. Fritsch, F. E. 1965. The structure and reproduction of the algae. Vol. 2. Cambridge, University Press.Google Scholar
  41. Gause, G. F. 1966. Microbial Models of Cancer Cells. Amsterdam, North Holland Publishing Co.Google Scholar
  42. Glaessner, M. F. 1962. Principles of Micropaleontology. London, Hafner Publishing Co.Google Scholar
  43. Graham, P. H. 1964. The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. J. Gen. Microbiol., 35: 511–517.Google Scholar
  44. Heberlein, G. T., J. De Ley, and R. Tijtgat. 1967. Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J. Bacteriol, 94: 116–124.PubMedGoogle Scholar
  45. Holland, H. D. 1962. Model for the evolution of the earth’s atmosphere. InA. E. J. Engel, Petrological Studies, 447–477. New York, Geol. Soc. of America.Google Scholar
  46. Holland, H. D. 1965. The history of ocean water and its effect on the chemistry of the atmosphere. Proc. Nat. Acad. Sci. USA, 53: 1173–1183.CrossRefGoogle Scholar
  47. Horowitz, N. H., and H. Mac Leod. 1960. The DNA content of Neurosporanuclei. Microbial Genet. Bull. 17: 6.Google Scholar
  48. Hutchinson, G. E. 1944. Nitrogen in the bio-geochemistry of the atmosphere. Amer. Sci., 32: 178–195.Google Scholar
  49. Kelly, A. P., and L. L. Weed. 1965. (as quoted by Gause, G. F. 1966. ) Microbial Models of Cancer Cells. Amsterdam, North Holland Publishing Co.Google Scholar
  50. Kluyver, A. J., and C. B. Van Niel. 1936. Prospects for a natural system of classification of bacteria. Zbl. Bakt. [Orig.], 94: 369–403.Google Scholar
  51. Knight, B. C. 1945. Growth factors in microbiology. Some wider aspects of nutritional studies with micro-organisms. Vitamins and Hormones, 3: 105–228.CrossRefGoogle Scholar
  52. Kornberg, A. 1965. Synthesis in DNA-like polymers de novo or by reiterative replication. InBryson, V., and H. J. Vogel, Evolving Genes and Proteins, 403417, New York, Academic Press.Google Scholar
  53. Kuznetsov, S. I., M. V. Ivanov, and N. N. Lyalikova. 1963. Introduction to Geological Microbiology, New York, McGraw Hill.Google Scholar
  54. Lewin, R. A. 1962. Physiology and Biochemistry of Algae, New York, Academic Press.Google Scholar
  55. Lwoff, A. 1943. L’évolution physiologique. Etude des pertes de fonctions chez les microorganismes, Paris, Hermann et Cie.Google Scholar
  56. Lysenko, O. 1961. Pseudomonas-an attempt at a general classification. J. Gen. Microbiol., 25:379–408.Google Scholar
  57. Marmur, J., E. Seaman, and J. Levine. 1963. Interspecific transformation in Bacillus. J. Bacteriol., 85: 461–467.PubMedGoogle Scholar
  58. Massie, H. R., and B. H. Zimm. 1965. Molecular weight of DNA in the chromosomes of E. coliand B. subtilis. Proc. Nat. Acad. Sci. USA, 54: 1636–1641.PubMedCrossRefGoogle Scholar
  59. Mccarthy, B. J., and E. T. Bolton. 1963. An approach to the measurement of genetic relatedness among organisms. Proc. Nat. Acad. Sci. USA, 50: 156–162.PubMedCrossRefGoogle Scholar
  60. Miller, S. L. 1957. The formation of organic compounds on the primitive earth. InOparin, A. I., The Origin of Life on Earth, 73–85, Moscow, Publ. House Acad. Sci. USSR.Google Scholar
  61. Morowitz, H. J., M. E. Tourtelotte, W. R. Guild, E. Castro, C. Woese, and R. C. Cleverdon. 1962. The chemical composition and submicroscopic morphol- ogy of Mycoplasma gallisepticum, avian PPLO 5969. J. Molec. Biol., 4: 93–103.PubMedCrossRefGoogle Scholar
  62. Myers, G. E., and R. G. L. Mc Cready. 1966. Bacteria can penetrate rock. Canad. J. Microbiol., 12: 477–484.Google Scholar
  63. Nakamura, H. 1938. Ueber die Kohlensäureassimilation bei niederen Algen in Anwesenheit des Schwefelwasserstoffs. Acta Phytochim. (Japan), 10: 271–281.Google Scholar
  64. Ogur, M., S. Minckler, and D. O. Mcclary. 1953. Deoxyribonucleic acid (DNA) and the budding cycle in the yeasts. J. Bact., 66: 642–645.PubMedGoogle Scholar
  65. Ogur, M., S. Minckler, and D. O. Mcclary. 1953. Deoxyribonucleic acid (DNA) and the budding cycle in the yeasts. J. Bact., 66: 642–645.PubMedGoogle Scholar
  66. Ruffen, M. G. 1962. The geological aspects of the origin of life on earth. Amsterdam, Elsevier.Google Scholar
  67. Schildkraut, C. L., J. Marmur, and P. Doty. 1961. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. Molec. Biol., 3: 595–617.PubMedCrossRefGoogle Scholar
  68. Schopf, J. W., E. S. Barghoorn, M. D. Maser, and R. O. Gordon. 1965. Electron microscopy of fossil bacteria two billion years old. Science, 149:1365–1367. SERENKOV, G. P. 1962. Nucleic acids and the evolution in the algal group. Izs. Akad. Nauk SSSR, Ser. Biol., 27: 857–868.Google Scholar
  69. Siegel, S. M., and C. Giumarro. 1966. On the culture of a microorganism similar to the Precambrian microfossil Kakabekia umbellataBarghoorn in NI-13-rich atmospheres. Proc. Nat. Acad. Sci. USA, 55: 349–353.PubMedCrossRefGoogle Scholar
  70. Siegel, S. M., G. Renwick, O. Daly, C. Giumarro, G. Davis, and L. Halpern. 1965. The survival capabilities and the performance of earth organisms in simulated extraterrestrial environments. InMamikunian, G., and M. H. Briggs, Exobiology, 119–178, London, Pergamon Press.Google Scholar
  71. Sneath, P. H. A. 1962. Longevity of microorganisms. Nature (London), 195: 643–646.CrossRefGoogle Scholar
  72. Sneath, P. H. A. 1964. The limits of life. Discovery, 25: 20–24.Google Scholar
  73. Sneath, P. H. A., and S. T. Cowan. 1958. An electrotaxonomic survey of bacteria. J. Gen. Microbiol., 19: 551–565.PubMedGoogle Scholar
  74. Stanier, R. Y., and C. B. Van Niel. 1962. The concept of a bacterium. Arch. Mikrobiol., 42: 17–35.CrossRefGoogle Scholar
  75. Sueoka, N. 1961. Variation and heterogeneity of base composition of deoxyribonucleic acids; a compilation of old and new data. J. Molec. Biol., 3: 31–40.CrossRefGoogle Scholar
  76. Sueoka, N. 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Nat. Acad. Sci. USA, 48: 582–592.PubMedCrossRefGoogle Scholar
  77. Symposium on the evolution of the earth’s atmosphere. 1965. Proc. Nat. Acad. Sci. USA, 53: 1169–1226.CrossRefGoogle Scholar
  78. Takahashi, H., H. Saito, and Y. Ikeda. 1966. Genetic relatedness of spore bearing bacilli studied by the DNA agar method. J. Gen. Appl. Microbiol., 12: 113–118.CrossRefGoogle Scholar
  79. Tasnadi-Kubacska, A. 1962. Paläo-Pathologie. Jena, G. Fischer Verlag.Google Scholar
  80. Vallentyne, J. R. 1965. Two aspects of geochemistry of amino acids. InFox, S. W. The Origin of Prebiological Systems, 105–120. New York, Academic Press.Google Scholar
  81. Weed, L. L. 1963. Effects of copper on Bacillus subtilis. J. Bacteriol., 85: 1003–1010.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1968

Authors and Affiliations

  • J. De Ley
    • 1
  1. 1.Laboratory of Microbiology, Faculty of SciencesState UniversityGentBelgium

Personalised recommendations