Enzymatic Deficiency in Monocytes from Patients with Chronic Granulomatous Disease

  • Marie-Anne Gougerot-Pocidalo
  • Diego Buriot
  • Claude Griscelli
  • Jacques Hakim
  • R. A. Harkness
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)


Chronic granulomatous disease (CGD) is by convention defined as a disorder involving a high susceptibility to bacterial infection related to the inability of the patient’s neutrophils to increase oxygen consumption, despite normal phagocytosis and normal degranulationl,2. CGD appears to be heterogeneous; most cases show an inherihance pattern typical of X-linkage, but the remainder are of non X-linked variety2. CGD heterogeneity has been further suggested by the lack of membrane components in some CGD patients as kx Antigen in neutrophils or red blood cells3, and b-like cytochrome in neutrophils4,5. In two different patients with CGD it has been possible to induce the oxidative burst, with stimuli other than those used in standard analysis procedure6,7.


Oxidative Burst Chronic Granulomatous Disease Enzymatic Deficiency Acetate Ester Increase Oxygen Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Holmes, A.R. Page, and R.A. Good, Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function, J. Clin. Invest. 46: 1422 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    R.B. Jr. Johnston, and I.L, Newman, Chronic granulomatous disease, Pediatr. Clin.North Am. 24: 365 (1977).PubMedGoogle Scholar
  3. 3.
    W.L. Marsh, R. Oyen, and M.E. Nichols, Kx antigen, the McLeod phenotype, and chronic granulomatous disease: further studies, Vox Sans. 31: 356 (1976).CrossRefGoogle Scholar
  4. 4.
    A.W. Segal, O.T.G. Jones, D. Webster and A.C. Allison, Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease, Lancet 2: 446 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    N. Borregaard, K.S. Johansen, and V. Esman, Quantitation of superoxide production in human polymorphonuclear leukocytes from normals and 3 types of chronic granulomatous disease, Biochem. Biophys. Res. Commun. 90: 214 (1979).CrossRefGoogle Scholar
  6. 6.
    D.S. Weening, D. Roos, C.M.R. Weemaes, J.W.T. Homan-Müller, and M.L.J. VanSchaik, Defective initiation of the metabolic stimulation in phagocytozing granulocytes: a new congenital defect, J. Lab. Clin. Med. 88: 757 (1976).PubMedGoogle Scholar
  7. 7.
    L. Harvath, and B.R. Andersen, Defective initiation of oxidative metabolism in polymorphonuclear leukocytes, N. Eng. J. Med. 300: 1130 (1979).CrossRefGoogle Scholar
  8. 8.
    N.C. Davis, H. Huber, S.D. Douglas, and H.H. Fudenberg, A defect in circulating mononuclear phagocytes in chronic granulomatous disease of childhood, J. Immuno1. 101: 1093 (1968)Google Scholar
  9. 9.
    G.E. Rodey, B.H. Park, D.B. Windhorst, and R.A. Good, Defective bactericidal activity of monocytes in fatal granulomatous disease, Blood 33: 813 (1969).PubMedGoogle Scholar
  10. 10.
    F. Schmalzl, and H. Braunsteiner, The cytochemistry of monocytes and macrophages, Ser. Haemat. III: 93 (1970).Google Scholar
  11. 11.
    E. Cramer, C. Auclair, J. Hakim, E. Feliu, J. Boucherot, H. Troube, J.F. Bernard, E. Bergogne, and P. Boivin, Metabolic activity of phagocytozing granulocytes in chronic granulocytic leukemia: ultrastructural observation of a degranulation defect, Blood 50: 93 (1977).PubMedGoogle Scholar
  12. 12.
    D.B. Windhorst, A.R. Page, B. Holmes, P.G. Quie, and R.A. Good, The pattern of genetic transmission of the leukocyte defect in chronic granulomatous disease, J. Clin. Invest. 47: 1026 (1967).CrossRefGoogle Scholar
  13. 13.
    M. Torres, D. DeProst, J. Hakim, and M.A. Gougerot, Metabolic activity of human polymorphonuclear leucocytes. Relation to ingestion rate, Europ. J. Clin. Invest. 9: 209 (1979)PubMedCrossRefGoogle Scholar
  14. 14.
    D.W. Biggar, Phagocytosis in patients and carriers of chronic granulomatous disease, Lancet 1: 991 (1975)PubMedCrossRefGoogle Scholar
  15. 15.
    A. Boyum, Isolation of mononuclear cells and granulocytes from human blood, Scand. J. Clin. Lab. Invest. 21 (Supp1.97): 77 (1968).Google Scholar
  16. 16.
    L. Ornstein, H. Awsley, and A. Saunders, Improving mammal differential white cell counts with cytochemistry, Blood cells 2: 557 (1976).Google Scholar
  17. 17.
    S.B. Tucker, R.V. Pierre, and R.E. Jordon, Rapid indentification of monocytes in a mixed mononuclear preparation, J. Immunol. Meth. 14: 267 (1977).CrossRefGoogle Scholar
  18. 18.
    H.W. VonHeyden, and D. VonHeyden, Characteristics of macrophages in vitro derived from peripheral blood cells, Blut 29: 37 (1974)CrossRefGoogle Scholar
  19. 19.
    J.K. Lace, J.S. Tan, and C. Watanakunakorn, An appraisal of the nitroblue tetrazolium test, Amer. J. Med. 58: 685 (1975).CrossRefGoogle Scholar
  20. 20.
    P.T. Fan, D.T.Y. Yu, C.M. Pearson, and R. Bluestone, Human monocyte-lymphocyte interaction: a new technique, J. Immunol. 119: 156 (1977).PubMedGoogle Scholar
  21. 21.
    A.L. Sagone, G.W. King, and E.N. Metz, A comparison of the metabolic response to phagocytosis in human granulocytes and monocytes, J. Clin. Invest. 57: 1352 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Flandrin, and M.T. Daniel, Practical value of cytochemical studies for the classification of acute leukemias, in: “Nomenclature,Methodology and Results of Clinical Trials in Acute Leukemias”, G. Mathe, P. Pouillart, and L. Schwarzenberg, eds., Heinemann, London (1973).Google Scholar
  23. 23.
    S. Kitawaga, F. Takatu, and S. Sakamoto, Evidence that proteases are involved in superoxide anion production by human polymorphonuclear leukocytes and monocytes, J. Clin. Invest. 65: 74 (1980).CrossRefGoogle Scholar
  24. 24.
    L. Simchowitz, J. Mehta, and I. Spilberg, Chemotactic factor-induced superoxide radical generation by human neutrophils. Requirement for proteinase (esterase) activity. J. Lab. Clin. Med. 94: 403 (1979).PubMedGoogle Scholar
  25. 25.
    B.D. Goldstein, G. Witz, M. Amaruso, and W. Troll, Protease inhibitors antagonize the activation of polymorphonuclear leukocyte oxygen consumption, Biochem. Biophys. Res. Commun. 88: 854 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Marie-Anne Gougerot-Pocidalo
    • 1
  • Diego Buriot
    • 2
  • Claude Griscelli
    • 2
  • Jacques Hakim
    • 1
  • R. A. Harkness
  1. 1.Laboratoire d’Immunologie et d’Hématologie — CHU Xavier BichatUniversité Paris VIIFrance
  2. 2.Unité d’Immunologie et d’Hématologie Pédiatriques — Département Pédiatrie et INSERM (U 132)Hôpital des Enfants MaladesParisFrance

Personalised recommendations