Advertisement

Mechanism of Hexose Transport in Human Polymorphonuclear Leukocytes

  • Charles E. McCall
  • David A. Bass
  • Michael Thomas
  • Joseph T. O’Flaherty
  • Lawrence R. DeChatelet
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)

Abstract

Cellular functions of human polymorphonuclear leukocytes (PMNL) including phagocytosis, motility, and bactericidal activity require energy derived from glucose. Whereas insulin does not stimulate hexose transport in human PMNL, we have recently reported that chemotactic factors such as complement-derived C5a, the synthetic oligopeptide N-formyl-methionyl-leucyl-phenylalanine (fMLP), or the calcium ionophore A23187 stimulates transport of deoxyglucose (DOG) into human PMNL1,2. FMLP with an EC50 of 1.2 nM, C5a with an EC50 of 1 nM, and A23187 with an EC50 of 10 nM all cause at least a 5-fold stimulation of DOG uptake.

Keywords

Arachidonic Acid Calcium Ionophore Arachidonic Acid Metabolism Hexose Transport Calcium Ionophore A23187 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. McCall, D. A. Bass, S. Cousart, and L. R. DeChatelet, Enhancement of hexose uptake in human polymorphonuclear leukocytes by activated complement C5a, Proc. Natl. Acad. Sci. 76: 5896 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    D. A. Bass, J. T. O’Flaherty, P. Szejda, L. R. DeChatelet, and C. E. McCall, Role of arachidonic acid in stimulation of hexose transport of human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. 77: 5206 (1980).CrossRefGoogle Scholar
  3. 3.
    J. T. O’Flaherty and P. A. Ward, Chemotactic factors and the neutrophil, Semin. Hematol. 16: 163 (1979).PubMedGoogle Scholar
  4. 4.
    P. Borgeat and B. Samulesson, Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc. Nati. Acad. Sci. USA 76: 2148 (1979).CrossRefGoogle Scholar
  5. 5.
    F. Hirata, B. B. Corcoran, K. Venkatasubramanian, E. Schiffmann, and J. Axelrod, Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes, Proc. Natl. Acad. Sci. 76: 2650 (1979).Google Scholar
  6. 6.
    J. T. O’Flaherty, H. J. Showell, E. L. Becker, and P. A. Ward, Neutrophil aggregation and degranulation. Effect of arachidonic acid, Am. J. Pathol. 95: 433 (1970).Google Scholar
  7. 7.
    P. H. Naccache, H. J. Showell, E. L. Becker, and R. I. Sha’afi, Arachidonic acid induced degranulation of rabbit peritoneal neutrophils, Biochem. Biophys. Res. Commun. 87: 292 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    E. J. Goetzl and F. F. Sun, Generation of unique mono-hydroxyeicosatetraenoic acids from arachidonic acid by human neutrophils, J. Exp. Med. 150: 406 (1970).CrossRefGoogle Scholar
  9. 9.
    G. M. Bockoch and P. W. Reed, Inhibition of the neutrophil oxidative response to a chemotactic peptide by inhibitors of arachidonic acid oxygenation, Biochem. Biophys. Res. Commun. 90: 481 (1979).CrossRefGoogle Scholar
  10. 10.
    T. P. Ciaraldi, O. G. Kolterman, J. A. Siegel, and J. M. Olefsky, Insulin-stimulated glucose transport in human adipocytes, Am. J. Physiol. 236: E621 (1979).PubMedGoogle Scholar
  11. 11.
    D. A. Bass, T. A. Gonwa, P. Szejda, S. Cousart, L. R. DeChatelet, and C. E, McCall, Eosinopenia of acute infection: Production of eosinopenia by chemotactic factors of acute inflammation. J. Clin. Invest. 65: 1265 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Franson and M. Waite, Relation between calcium requirement. substrate charge, and rabbit polymorphonuclear leukocyte phosphilipase A2 activity. Biochemistry. 17: 4029 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    E. J. Goetzl, A. R. Brash, A. I. Tauber, J. A. Oates, and W. C. Hubbard, Modulation of human neutrophil function by monohydroxyeicosatetraenoic acids, Immunology. 39: 491 (1980).PubMedGoogle Scholar
  14. 14.
    R. J. Flower, Drugs which inhibit prostaglandin biosynthesis. Pharmacol. Rev. 26: 33 (1974).PubMedGoogle Scholar
  15. 15.
    M. Blecher, Effects of insulin and phosphalipase A on glucose transport across the plasma membrane of free adipase cells, Biochim. Biops. Acta. 137: 557 (1967).CrossRefGoogle Scholar
  16. 16.
    G. Dietze, M. Wicklayr, I. Bottger, and L. Mayer, Insulin action on glucose uptake into skeletal muscle: Inhibition of endogenous biosynthesis of prostaglandins. FEBS Lett. 92: 294 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Charles E. McCall
    • 1
  • David A. Bass
    • 1
  • Michael Thomas
    • 1
  • Joseph T. O’Flaherty
    • 1
  • Lawrence R. DeChatelet
    • 1
  1. 1.Departments of Medicine and BiochemistryBowman Gray School of MedicineWinston-SalemUSA

Personalised recommendations