Advertisement

Characterization of the Peroxidase in Human Eosinophils

  • R. Wever
  • M. N. Hamers
  • C. J. de Graaf
  • R. S. Weening
  • D. Roos
  • R. B. JohnstonJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)

Summary

Human eosinophil peroxidase is a cationic protein with a high content of arginine, the enzyme being poorly soluble in water. The purified enzyme is able to carry out the peroxidative chlorination of monochlorodimedon. Like myeloperoxidase the position of the pH optimum of this reaction depends on the ratio of the concentrations of chloride and H2O2. Compared to myeloperoxidase the pH optimum is shifted by 0.8 pH unit to more acid pH values. The physiological consequences of the properties of the eosinophil peroxidase are discussed.

Keywords

Eosinophil Cationic Protein Hypochlorous Acid Schistosoma Mansoni Human Eosinophil Chlorination Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. James and D.G. Colley, Eosinophil-mediated destruction of Schistosoma mansoni eggs, J. Reticuloendothel. Soc. 359 (1976).Google Scholar
  2. 2.
    J.P. Caulfield, G. Korman, A.E. Butterworth, M. Hogan and J.R. David, The adherence of human neutrophils and eosinophils to schistosomula: Evidence for membrane fusion between cells and parasites, J. Cell Biol. 86: 46 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    J.P. Caulfield, G. Korman, A.E. Butterworth, M. Hogan and J.R. David, Partial and complete detachment of neutrophils and eosinophils from schistosomula: Evidence for the establishment of continuity between a fused and normal parasite membrane, J. Cell Biol. 86: 64 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    P.B. Beeson and D.A. Bass, “The Eosinophil”, vol. 14 in the Series Major Problems in Internal Medicine, L.H. Smith, Jr., ed., W.B. Saunders Comp., Philadelphia (1977).Google Scholar
  5. 5.
    P.F. Weller and E.J. Goetzl, The human eosinophil, roles in host defense and tissue injury, Am.J. Pathol. 100: 795 (1980).Google Scholar
  6. 6.
    D.J. McLaren, C.D. Mackenzie, F.J. Ramalho-Pinto, Ultrastructural observations on the in vitro interaction between rat eosinophils and some parasitic helminths (Schistosoma mansoni, Trichinella spiralis and Nippostrongylus braziliensis, Clin. Exp. Immunol. 30: 105 (1977).PubMedGoogle Scholar
  7. 7.
    K. Agner, Biological effects of hypochlorous acid formed by “MPO”peroxidation in the presence of chloride ions, in: “Structure and function of Oxidation-Reduction Enzymes”, Å. Åkesson and A. Ehrenberg, eds., p. 329, Pergamon Press, Oxford (1970).Google Scholar
  8. 8.
    T. Stelmaszynska and J.M. Zgliczynski, Myeloperoxidase of human neutrophilic granulocytes as chlorinating enzyme, Eur. J. Biochem. 45: 305 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    J.E. Harrison and J. Schultz, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251: 1371 (1976).PubMedGoogle Scholar
  10. 10.
    H.J. Sips and M.N. Hamers, Mechanism of the bactericidal action of myeloperoxidase: permeabilization of Escherichia colí, Infect. Immun., in press.Google Scholar
  11. 11.
    R. Weyer, H. Plat and M.N. Hamers, Human eosinophil peroxidase: a novel isolation procedure, spectral properties and chlorinating activity. FEBS Letters, submitted for publication.Google Scholar
  12. 12.
    R. Wever, M.N. Hamers, R.S.Weening and D. Roos, Characterization of the peroxidase in human eosinophils, Eur. J. Biochem. 108: 491 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    A.R.J. Bakkenist, R. Wever, T. Vulsma, H. Plat and B.F. van Gelder, Isolation procedure and some properties of myeloperoxidase from human leukocytes. Biochim. Biophys. Acta 524: 45 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    I. Olsson, P. Venge, J.K. Spitznagel and R.I. Lehrer, Argininerich cationic proteins of human eosinophil granules, Lab. Invest. 36: 493 (1977).PubMedGoogle Scholar
  15. 15.
    L.P. Hager, D.R. Morris, F.E. Brown and H. Eberwein, Chloroperoxidase II. utilization of halogen anions, J. Biol. Chem. 241: 1769 (1966).PubMedGoogle Scholar
  16. 16.
    J.M. Zgliczynski, R.J. Selvaraj, B.B. Paul, T. Stelmaszynska, P.K.F. Poskitt and A.J. Sbarra, Chlorination by the myeloperoxidase-H202-Cl antimicrobial system at acid and neutral pH, Proc. Soc. Exp. Biol. Med. 154: 418 (1977).PubMedGoogle Scholar
  17. 17.
    A.R.J. Bakkenist, J.E.G. de Boer, H. Plat and R. Wever, The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions, Biochim. Biophys. Acta 613: 337 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. Wever
    • 1
  • M. N. Hamers
    • 2
    • 3
  • C. J. de Graaf
    • 1
  • R. S. Weening
    • 2
    • 3
  • D. Roos
    • 2
    • 3
  • R. B. JohnstonJr.
  1. 1.Laboratory of Biochemistry, B.C.P. Jansen InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Central Laboratory of the Netherlands Red Cross Blood Transfusion ServiceAmsterdamThe Netherlands
  3. 3.Laboratory of Experimental and Clinical Immunology of the University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations