Ca2+ Transport and Surface Membrane ATPase in Macrophages

  • R. Pantaleo
  • A. Fusaro
  • D. Giordano
  • S. Papa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)


Macrophages display a number of defense processes like endocytosis, chemiotactic motility and secretion of hydrolytic enzymes1,2, which are functional expressions of the plasma membrane and contiguous structures like the surface coat and cytoskeleton components 3,4. Elucidation of the mechanisms by which these diverse functions are controlled, so to respond in an orderly fashion to external and internal stimuli, is of primary importance for understanding of the role of macrophages in inflammation, immunological processes and neoplastic growth and citotoxicity1,2,5.


ATPase Activity Alveolar Macrophage Lanthanum Chloride Absorbance Decrease Dependent ATPase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.M.Green, Pulmonary clearance of infections afents, Annu. Rev. Med. 19: 315 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    R.Snydermann and S.E.Mergenhagen, Chemotaxís of macrophages, in: “Immunology of the Macrophages” D.S.Nelson ed., Academic Press, New York (1976).Google Scholar
  3. 3.
    G.L.Nicolson, Transmembrane control of the receptors on normal and tumor cells. I - Cytoplasmic influence over cell surface components, Biochim.Biophys.Acta 457: 57 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    G.L.Nicolson, Transmembrane control of the receptors on normal and tumor cells. II - Surface changes associated with transformation and malignancy, Bíochim.Biophys.Acta 458: 1 (1976).PubMedGoogle Scholar
  5. 5.
    P.J.Edelson and E.A.Cohn, Peroxidase mediated mammalian cell cytotoxicity, J.Exp.Med. 138: 318 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    B.D.Gomperts, Calcium and cell activation, in: “The Plasma Membrane, Models for Structure and Function”,P.Cuatrecasas and M.F.Greaves, eds., Academic Press, London (1977).Google Scholar
  7. 7.
    C.Schneider, R.Gennaro, G.De Nicola and D.Romeo, Secretion of granule enzymes from alveolar macrophages, Exp.Cell.Res. 112: 249 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    A.C.Allison, P.Davies and S.D.Petris, Role of contractile micro filaments in macrophage movement and endocytosis, Natura New Biol. 232: 153 (1971).Google Scholar
  9. 9.
    D.Romeo, C.Schneíder, R.Gennaro and C.Mottola, The regulation of macrophages activities. Role of the energy-dependence in-tracellular Ca2+-buffering systems, in: Macrophages and Limphocytes, Nature, Functions and Interactions“, M.E.Escober and M.Friedman, eds., Plenum Press, New York, in press.Google Scholar
  10. 10.
    M.M.Boucek and R.Snydermann, Calcium influx requirement for human neutrophil chemotaxis: inhibition of Lanthanum chloride, Science 193: 905 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    G.Zabucchi and D.Romeo, The dissociation of exocytosis and respiratory stimulation in leucocytes by íonophores, Biochemical J. 156: 209 (1976).Google Scholar
  12. 12.
    T.Ohnishi and S.Ebashi, The velocity of calcium binding of isolated sarcoplasmic retículum, J.Biochem. (Tokio) 55: 599 (1964).Google Scholar
  13. 13.
    A.Scarpa, J.Baldassarre and G.Inesi, The effect of calcium-ionophores on fragmented sarcoplasmic retículum, J.Gen.Physiol. 60: 735 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    P.W.Reed and M.A.Lardy, A 23187 a divalent cation ionophore, J.Biol.Chem. 247: 6970 (1972).PubMedGoogle Scholar
  15. 15.
    M.F. Mustafa, C.E.Gross and J.A.Hardic, Localization of Na+-K+, Mg++-adenosinetriphosphatase activity in pulmonary alveolar macrophages subcellular fraction, Life Sci. 9, part.I: 947 (1970).Google Scholar
  16. 16.
    J.E.Smolen and G.Weíssmann, Mg2+-ATPase as a membrane ectoenzyme of human granulocytes. Inhibitors, activators and response to phagocytosis, Biochim.Biophys.Acta 512: 525 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    A.Pansini, F.Guerrieri and S.Papa, Control of proton conduction by the H+-ATPase in the inner mitochondrial membrane. Eur.J. Biochem. 92: 545 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    J.H.Hartwig and T.P.Stossel, Isolation and properties of actin, myosine and a new actin-binding protein in rabbit alveolar macrophages, J.Biol.Chem. 250: 5696 (1975).PubMedGoogle Scholar
  19. 19.
    R.Gennaro, C.Mottola, C.Schneider and D.Romeo, Ca2+-dependent ATPase activity of alveolar macrophage plasma membrane, Biochim.Biophys.Acta 567: 238 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    C.Schneider, C.Mottola and D.Romeo, Phosphoprotein intermediate in the calcium dependent ATPase reaction of macrophage plasma membrane, J.Supram.Struct. 10: 433 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. Pantaleo
    • 1
  • A. Fusaro
    • 1
  • D. Giordano
    • 1
  • S. Papa
    • 2
  1. 1.Institute of General PathologyFaculty of Medicine University of BariBariItaly
  2. 2.Institute of Biological ChemistryFaculty of Medicine University of BariBariItaly

Personalised recommendations