ATP-Driven Ca2+ Pump Activity of Macrophage and Neutrophil Plasma Membrane

  • Claudio Schneider
  • Cristina Mottola
  • Lucilla Dolzani
  • Domenico Romeo
  • B. M. Babior
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)


Elevation of cytosolic Ca2+ concentration elicits a variety of responses from macrophages and neutrophils. These include activation of cell locomotion (1–4), secretion of granule components such as hydrolytic enzymes (3,5–7), and increased reduction of oxygen to cytocidal superoxide anion and hydrogen peroxide (7–10). The activity of cytosolic Ca2+ in these processes has been in part explained at the molecular level. For example, Ca2+ controls gelsolin-dependent gel-sol transformation of actin, which modulates macrophage locomotion, secretion and endocytosis (11). Further, a Ca2+-requiring plasma membrane phospholipase A2 (12) can release arachidonic acid, whose metabolites are likely involved in the modulation of neutrophil chemotaxis and secretion (13,14).


Alveolar Macrophage Calcium Transport Pump Activity Plasma Membrane Fraction Dependent ATPase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilkinson, P.C. 1975. Leucocyte locomotion and chemotaxis. The influence of divalent cations and cation ionophores. Exp.Cell. Res. 93: 420.PubMedCrossRefGoogle Scholar
  2. 2.
    Bouceck, M.M. and R. Snyderman. 1976. Calcium influx requirement for human neutrophil chemotaxis. Inhibition by lanthanum chloride. Science 193: 905.CrossRefGoogle Scholar
  3. 3.
    Petroski, R.J., P.H. Naccache, E.L. Becker and R.I. Sha’afi. 1979. Effect of chemotactic factors on the calcium levels of rabbit neutrophils. Am.J.Physiol. 237: C43.PubMedGoogle Scholar
  4. 4.
    Cramer, E.B. and J.I. Gallin. 1979. Localization of submembraneous cations to the leading end of human neutrophils during chemotaxis. J.Cell Biol. 82: 369.PubMedCrossRefGoogle Scholar
  5. 5.
    Zabucchi, G., M.R. Soranzo, F. Rossi and D. Romeo. 1975. Exocytosis in human polymorphonuclear leukocytes induced by A23187 and calcium. FEBS Lettr. 54: 44.CrossRefGoogle Scholar
  6. 6.
    Schneider, C., R. Gennaro, G. de Nicola and D. Romeo. 1978. Secretion of granule enzymes from alveolar macrophages. Regulation by intracellular Ca2+-buffering capacity. Exp.Cell Res. 112: 249.PubMedCrossRefGoogle Scholar
  7. 7.
    Roos, D., M. de Boer and R.S. Weening. 1977. The role of calcium and magnesium in some functions of human neutrophils. In Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, F. Rossi, P. Patriarca and D. Romeo, eds., p. 223, Piccin Medical Books, Padova.Google Scholar
  8. 8.
    Romeo, D., G. Zabucchi, N. Miani and F. Rossi. 1975. Ion movement across leucocyte plasma membrane and excitation of their metabolism. Nature 253: 542.PubMedCrossRefGoogle Scholar
  9. 9.
    Root, R.K. and J.A. Metcalf. 1977. Superoxide and hydrogen peroxide formation by human granulocytes: inter-relationships and activation mechanisms. In Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, F.Rossi, P.Patriarca and D.Romeo, eds., p. 185, Piccin Medical Books, Padova.Google Scholar
  10. 10.
    Matsumoto, T., K. Takeshige and S. Minakami. 1979. Inhibition of phagocytic metabolic changes of leukocytes by an intracellular calcium antagonist 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate. Biochem.Biophys.Res.Commun. 88: 974.PubMedCrossRefGoogle Scholar
  11. 11.
    Yin, H.L. and T.P. Stossel. 1979. Control of cytoplasmic actin gelsol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281: 583.PubMedCrossRefGoogle Scholar
  12. 12.
    Franson, R., J. Weiss, L. Martin, J. Spitznagel and P. Elsbach. 1977. Phospholipase A activity associated with the membranes of human polymorphonuclear leucocytes. Biochem.J. 167: 839.PubMedGoogle Scholar
  13. 13.
    Turner, S.R., J.A. Tayner and W.S. Lynn. 1975. Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature 257: 680.PubMedCrossRefGoogle Scholar
  14. 14.
    Naccache, P.H., H.J. Showell, E.L. Becker and R.I. Sha’afi. 1979. Arachidonic acid induced degranulation of rabbit peritoneal neutrophils. Biochem.Biophys.Res.Commun. 87: 292.PubMedCrossRefGoogle Scholar
  15. 15.
    Naccache, P.H., M. Volpi, H.J. Showell, E.L. Becker and R.I. Sha’afi. 1979. Chemotactic factor induced release of membrane calcium in rabbit neutrophils. Science 203: 461.PubMedCrossRefGoogle Scholar
  16. 16.
    Ferreira, H.G. and V.L. Lew. 1976. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature 259: 47.PubMedCrossRefGoogle Scholar
  17. 17.
    Babcock, D.F., N.L. First and H.A. Lardy. 1976. Action of ionophore A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes. J.Biol.Chem. 251: 3881.PubMedGoogle Scholar
  18. 18.
    Desmedt, J.E. and K. Hainaut. 1976. The effect of A23187 ionophore on calcium movements and contraction processes in single barnacle muscle fibers. J.Physiol., Lond. 257: 87.PubMedGoogle Scholar
  19. 19.
    Cittadini, A., D. Bossi, G. Rosi, F. Wolf and T. Terranova. 1977. Calcium metabolism in Ehrlich ascites tumour cells. Biochim.Biophys.Acta 469: 345.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen, J.J., D.F. Babcock and H.A. Lardy. 1978. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc.Natl.Acad.Sci. USA 75: 2234.PubMedCrossRefGoogle Scholar
  21. 21.
    Schatzmann, H.J. and H. Bürgin. 1978. Calcium in human blood red cells. Ann.N.Y.Acad.Sci. 307: 125.PubMedCrossRefGoogle Scholar
  22. 22.
    Rasmussen, H., C. Clayberger and M.C. Gustin. 1979. The messenger function of calcium in cell activation. In Symposia of the Society of Experimental Biology, vol.33, Secretory Mechanisms, p. 161, Cambridge University Press, Cambridge.Google Scholar
  23. 23.
    Lew, P.D. and T.P. Stossel. 1980. Calcium transport by macrophage plasma membranes. J.Biol.Chem. 255: 5841.PubMedGoogle Scholar
  24. 24.
    Caroni, P. and E. Carafoli. 1980. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature 283: 765.PubMedCrossRefGoogle Scholar
  25. 25.
    Robinson, J.D. 1976. Calcium-stimulated phosphorylation of a brain (Ca + Mg)-ATPase preparation. FEBS Lettr. 87: 261.CrossRefGoogle Scholar
  26. 26.
    St. Louis, P.J. and P.V. Sulakhe. 1978. Protein analysis of cardiac sarcolemma: Effects of membrane-perturbing agents on membrane proteins and calcium transport. Biochemistry, 17: 4540.CrossRefGoogle Scholar
  27. 27.
    Larsen, F.L. and F.F. Vincenzi. 1979. Calcium transport across the plasma membrane: Stimulation by calmodulin. Science 204: 306.PubMedCrossRefGoogle Scholar
  28. 28.
    Haaker, H. and E. Racker. 1979. Purification and reconstitution of the Ca2+-ATPase from plasma membranes of pig erythrocytes. J.Biol. Chem. 254: 6598.PubMedGoogle Scholar
  29. 29.
    Mottola, C., L. Dolzani and D. Romeo. 1980. The peripheral Ca2+ pump activity of macrophages and neutrophils. Cell Calcium 1: 371.CrossRefGoogle Scholar
  30. 30.
    Flora, U., R. Gennaro and D. Romeo. 1980. Improved technique for the measurement of the kinetics of Ca2+ uptake by cells: The coupling of an amplifier with voltage regulator to a Ca2+ selective electrode. Anal.Biochem. 102: 77.PubMedCrossRefGoogle Scholar
  31. 31.
    Baker, P.F. 1976. Regulation of intracellular Ca and Mg in squid axons. Fed.Proc. 35: 2589.PubMedGoogle Scholar
  32. 32.
    Lee, C.O., D.Y. Uhm, and K. Dresdner. 1980. Sodium-calcium exchange in rabbit heart muscle cells: Direct measurement of sarcoplasmic Ca2+ activity. Science 209: 699.PubMedCrossRefGoogle Scholar
  33. 33.
    Martonosi, A. 1969. Sarcoplasmic reticulum:VII. Properties of a phosphoprotein intermediate implicated in calcium transport. J. Biol.Chem. 244: 613.PubMedGoogle Scholar
  34. 34.
    Gennaro, R., C. Mottola, C. Schneider and D. Romeo. 1979. Ca2+-Dependent ATPase activity of alveolar macrophage plasma membrane. Biochim.Biophys.Acta 567: 238.PubMedCrossRefGoogle Scholar
  35. 35.
    Schneider, C., C. Mottola and D. Romeo. 1979. Phosphoprotein intermediate in the Ca2+-dependent ATPase reaction of macrophage plasma membrane. J.Supramol.Struct. 10: 433.PubMedCrossRefGoogle Scholar
  36. 36.
    Schneider, C., C. Mottola and D. Romeo. 1979. Calcium ion-dependent adenosine triphosphatase activity and plasma-membrane phosphorylation in the human neutrophil. Biochem.J. 182: 655.PubMedGoogle Scholar
  37. 37.
    Mottola, C., R. Gennaro, A. Marzullo and D. Romeo. 1980. Isolation and partial characterization of the plasma membrane of purified bovine neutrophils. Eur.J.Biochem. 111: 341.PubMedCrossRefGoogle Scholar
  38. 38.
    Caswell, A.H. and J.D. Hutchinson. 1971. Visualization of membrane bound cations by a fluorescent technique. Biochem.Biophys.Res. Commun. 42: 43.PubMedCrossRefGoogle Scholar
  39. 39.
    Bretscher, M.S. 1973. Membrane structure: Some general principles. Science 181: 622.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Claudio Schneider
    • 1
  • Cristina Mottola
    • 1
  • Lucilla Dolzani
    • 1
  • Domenico Romeo
    • 1
  • B. M. Babior
  1. 1.Istituto di Chimica BiologicaUniversità di TriesteItaly

Personalised recommendations