Apparent Km of Leukocyte O2 and H2 O2 Forming Enzyme for Oxygen

  • Katsuko Kakinuma
  • Mizuho Kaneda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)


Polymorphonuclear leukocytes (PMN) exhibit during phagocytosis a marked burst in oxidative metabolism, i.e., an increase in both oxygen uptake and in glucose oxidation through the hexose monophos-phate shunt (HMP)l that involves the generation of H2 O2 and O 2 . 2,3 Studies of the enzyme mechanism underlying the activation of the oxidative metabolism in PMN have regarded NADH 4–6 or NADPH7,8 as electron donor for the reduction of oxygen.


NADPH Oxidase Particle Fraction Photobacterium Phosphoreum Ticle Fraction Bacterial Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Sbarra and M. L. Karnovsky, J. Biol. Chem. 234: 1355 (1959).PubMedGoogle Scholar
  2. 2.
    G. Y. N. Iyer, M. F. Islam and J. H. Quastel. Nature, 192: 535 (1961).CrossRefGoogle Scholar
  3. 3.
    B. M. Babior, R. S. Kipness and J. T. Curnutte; J. Clin. Invest. 52:714 (1973).CrossRefGoogle Scholar
  4. 4.
    W. H. Evans and M. L. Karnovsky, Biochemistry, 1: 159 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    R. H. Cagan and M. L. Karnovsky, Nature, 204:255 (1964).PubMedCrossRefGoogle Scholar
  6. 6.
    R. L. Baehner, N. Gilman and M. L. Karnovsky, J. Clin. Invest. 49: 692 (1970).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Patriarca, R. Cramer, S. Moncalbo, F. Rossi and D. Romeo, Arch. Biochem. Biophys. 145: 255 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Rossi, D. Romeo and P. Patriarca, J. Reticuloendothel. Soc. 12: 127 (1972).PubMedGoogle Scholar
  9. 9.
    K. Kakinuma, A. Boveris and B. Chance, Febs Lett. 74: 295 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Kakinuma and M. Kaneda, Febs. Lett. 111: 90 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Kakinuma, J. Biochem. 68: 177 (1970).PubMedGoogle Scholar
  12. 12.
    K. Kakinuma and S. Minakami, Biochim. Biophys. Acta, 538: 50 (1978).CrossRefGoogle Scholar
  13. 13.
    K. Kakinuma, T. Yamaguchi, M. Kaneda, K. Shimada, Y. Tornita and B. Chance, J. Biochem. 86: 87 (1979).PubMedGoogle Scholar
  14. 14.
    B. Chance, Arch. Biochem. 22: 224 (1949).PubMedGoogle Scholar
  15. 15.
    H. Theorell, Enzymologia, 1O: 25O (1941).Google Scholar
  16. 16.
    T. Yonetani, in “Methods in Enzymology”, R. W. Estabrook and M. E. Pullman, eds., Academic Press, New york, 10:336 (1967).Google Scholar
  17. 17.
    T. Yonetani, in “The Enzymes” 3rd ed. P. D. Boyer, ed., Academic Press, New York, 13:345 (1976).Google Scholar
  18. 18.
    R. Oshino, N. Oshino, M. Tamura, L. Kobilinsky and B. Chance, Biochim. Biophys. Acta, 273: 5 (1972).CrossRefGoogle Scholar
  19. 19.
    J. Butler, G. G. Jayson and A. J. Swallow, Biochim. Biophys. Acta, 408: 215 (1975).CrossRefGoogle Scholar
  20. 20.
    M. G. Simic, I. A. Taub, J. Tocci and P. A. Hurwitz, Biochem. Biophys. Res. Comm. 62: 161 (1975).CrossRefGoogle Scholar
  21. 21.
    E. J. Land and A. J. Swallow, Biochim. Biophys. Acta, 234: 34 (1971).CrossRefGoogle Scholar
  22. 22.
    H. Forman and I. Fridovich, Arch. Biochem. Biophys. 158: 396 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Katsuko Kakinuma
    • 1
  • Mizuho Kaneda
    • 1
  1. 1.The Tokyo Metropolitan Institute of Medical ScienceHonkomagome, Bunkyo-ku, TokyoJapan

Personalised recommendations