The Respiratory Burst of Phagocytic Cells: Facts and Problems

  • Filippo Rossi
  • Paolo Bellavite
  • Giorgio Berton
  • Pietro Dri
  • Giuliano Zabucchi
  • R. E. Basford
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)


The phagocytic cells have impressive capacities to respond to a variety of external stimuli with activation of random and oriented movement, with secretion of mediators and enzymes stored in cytoplasmic organelles, with production of new compounds and mediators, with changes of the quality and of the intensity of oxidative metabolism. The most impressive response is the production, in a very short time, of an enormous amount of weapons and projectiles that are used against viruses, bacteria, protozoa, tumor cells etc. These weapons are O 2 , H2O2, OH.and singlet oxygen and are intermediate products of a particular type of respiration, called “respiratory burst”, which is induced by a perturbation of the plasma membrane of the phagocytes following the interaction with particulate matter and with a number of soluble factors1–7.


NADPH Oxidase Oxidase Activity Intact Cell Respiratory Burst NADH Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Baldridge, R. W. Gerard, The extrarespiration of phagocytosis, Amer.J.Physiol. 103: 235 (1933).Google Scholar
  2. 2.
    G. Y. N. Iyer, M. F. Islam and H. J. Quastel, Biochemical aspects of phagocytosis, Nature (London) 192: 535 (1961).CrossRefGoogle Scholar
  3. 3.
    M. L. Karnovsky, Metabolic basis of phagocytic activity, Physiol. Rev. 42: 143 (1962).PubMedGoogle Scholar
  4. 4.
    F. Rossi and M. Zatti, Changes in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis, Brit.J.Exp. Pathol. 45: 548 (1964).Google Scholar
  5. 5.
    B. M. Babior, Oxygen-dependent microbial killing by phagocytes, N.Engl.J.Med. 298: 659 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    F. Rossi, D. Romeo and P. Patriarca, Mechanismsof phagocytosisassociated oxidative metabolism in polymorphonuclear leucocytes and macrophages, J.Reticuloendothel.Soc. 12: 127 (1972).PubMedGoogle Scholar
  7. 7.
    J. A. Badwey and M. L. Karnovsky, Active oxygen species and the functions of phagocytic leukocytes, Ann.Rev.Biochem. 49: 695 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    L. R. DeChatelet, C. E. McCall and M. R. Cooper, Aminoacid oxidase in leukocytes: evidence against a major role in phagocytosis, Infect.Immun. 5: 632 (1971).Google Scholar
  9. 9.
    L. R. DeChatelet, M. R. Cooper and C. E. McCall. Stimulation of the hexose monophosphate shunt in human neutrophils by ascorbic acid: mechanism of action. Antimicrob. Agents Chemother. 1: 12 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    F. Rossi and M. Zatti, Mechanism of the respiratory stimulation in saponine-treated leukocytes. The KCN insensitive oxidation of NADPH, Biochim.Biophys.Acta 153: 296 (1968).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Patriarca, R. Cramer, S. Moncalvo, F. Rossi and D. Romeo, Enzymatic basis of metabolic stimulation in leukocytes during phagocytosis: The role of activated NADPH oxidase, Arch.Biochem.Biophys. 145:255 (1971)Google Scholar
  12. 12.
    B. B. Paul, R. R. Strauss, A. A. Jacobs and A. J. Sbarra, Direct involvement of NADPH oxidase with the stimulated respiratory and hexose phosphate shunt activity in phagocytizing leuko-cytes, Exp.Cell Res. 73: 456 (1972).PubMedCrossRefGoogle Scholar
  13. 13.
    H. J. Cohen, M. E. Chovaniec and W. A. Davies, Activation of the guinea pig granulocytes NAD(P)H dependent superoxide generating enzyme: localization in a plasmamembrane enriched particle and kinetics of activation, Blood 55: 355 (1980).PubMedGoogle Scholar
  14. 14.
    L. R. DeChatelet, L. C. McPhail, D. Mullikin and C. E. McCall, An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes, J. Clin. Invest. 55: 714 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Kakinuma and M. Kaneda, Kinetic studies on the H202 (0)-forming enzyme in guinea pig leukocytes, FEBS Letters 111: 90 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    W. H. Evans and M. L. Karnovsky, A possible mechanism for the stimulation of some metabolic functions during phagocytosis, J. Biol. Chem. 236:Pc30 (1961).Google Scholar
  17. 17.
    R. H. Cagan and M. L. Karnovsky, Enzymatic basis of the respiratory stimulation during phagocytosis, Nature (London) 204–255 (1964).Google Scholar
  18. 18.
    M. L. Karnovsky, Chronic granulomatous disease. Pieces of a cellular and molecular puzzle, Fed. Proc. 32: 1527 (1973).PubMedGoogle Scholar
  19. 19.
    G. L. Mandell and G. W. Sullivan, Pyridine nucleotide oxidation by intact human polymorphonuclear neutrophils, Biochim. Biophys. Acta 234: 43 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    J. A. Badwey and M. L. Karnovsky, Active oxygen species and the functions of phagocytic leukocytes, Ann.Rev.Biochem. 49: 695 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    R. J. Selvaraj and A. J. Sbarra, The role of the phagocyte in host-parasite interaction. VII. Di and triphosphopyridine nucleotide kinetics during phagocytosis. Biochim.Biophys.Acta 141: 243 (1967).Google Scholar
  22. 22.
    R. Rossi, D. Romeo and P. Patriarca, Mechanism of phagocytosisassociated oxidative metabolism in polymorphonuclear leuco= cytes and macrophages, J. Reticuloendothel. Soc. 12: 127 (1972).PubMedGoogle Scholar
  23. 23.
    A. Aellig, M. Maillard, A. Phavorin and J. Frei, The energy meta bolism of the leukocyte. IX. Changes in the concentrations of the coenzymes NAD, NADH, NADP, NADPH in polymorphonuclear leu cocytes during phagocytosis of Staphylococcus albus and due to the action of phospholipase C, Enzyme 22: 207 (1977).PubMedGoogle Scholar
  24. 24.
    P. Bellavite, G. Berton, P. Dri, M. R. Soranzo, Enzymatic basis of the respiratory burst of guinea pig peritoneal resident macrophages. J. Reticuloendothel. Soc. 29: 47 (1981).PubMedGoogle Scholar
  25. 25.
    G. Berton, P. Bellavite, P. Dri, F. Rossi, Metabolism of inflam matory macrophages. I. The enzyme responsible for the respi ratory burst in elicited peritoneal macrophages of guinea pigs J.Pathology (submitted).Google Scholar
  26. 26.
    R. T. Briggs, D. B. Drath, M. L. Karnovsky and M. J. Karnovsky, Localization of NADH oxidase on the surface of human polymor phonuclear leukocytes by a new cytochemical method. J.Cell Biol. 67: 566 (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Takanaka and P. J. O’Brien, Mechanism of H202 formation by leukocytes. Evidence for a plasmamembrane location, Arch. Biochem. 169: 428 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    J. M. Goldstein, M. Cerqueira, S. Lund and H. B. Kaplan, Eviden ce that the superoxide generating system of human leukocytes is associated with the cell surface, J. Clin. Invest. 59: 249 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    B. Dewald, M. Baggiolini, J. T. Curnutte and B. M. Babior, Sub cellular localization of the superoxide forming enzyme in human neutrophils, J. Clin. Invest. 63: 21 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    D. B. Iverson, P. Wang-Iverson, J. K. Spitznagel and L. R. De Chatelet, Subcellular localization of NAD(P)H oxidases in human neutrophilic polymorphonuclear leukocytes, Biochem. J. 176: 175 (1978).PubMedGoogle Scholar
  31. 31.
    A. I. Tauber and E. J. Goetzl, Subcellular localization and so lubilization of the superoxide generating activities (SGA) of human neutrophils, Blood 52 (Suppl. 1): 128 (1978).Google Scholar
  32. 32.
    P. Patriarca, R. Cramer, P. Dri, L. Fant, R. R. Basford and F. Rossi, NADPH oxidizing activity in rabbit polymorphonu= clear leukocytes: localization in azurophilic granules, Biochem.Biophys.Res.Commun. 53: 830 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    F. Rossi, P. Patriarca, G. Berton and G. De Nicola, Subcellular localization of the enzyme responsible for the respiratory burst in resting and phorbol myristate acetate activated leucocytes, in: “Biological and Clinical Aspects of Superoxide and Superoxide Dismutase” (W.H.Bannister and J.V.Bannister eds.) pp. 193–200. Elsevier/North Holland, New York.Google Scholar
  34. 34.
    J. A. Badwey and M. L. Karnovsky, Production of superoxide anion hydrogen peroxide by an NADH-oxidase in guinea pig polymorphonuclear leukocytes, J. Biol. Chem. 254: 11530 (1979).PubMedGoogle Scholar
  35. 35.
    P. Bellavite, G. Berton, P. Dri, Studies on the NADPH oxidation by subcellular particles from phagocytosing polymorphonuclear leukocytes. Evidence for the involvement of three mechanisms, Biochim. Biophys. Acta 591: 434 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    P. Patriarca, P. Dri, K. Kakinuma, F. Tedesco and F. Rossi, Stu dies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2, Biochim. Biophys. Acta 385: 380 (1975).PubMedCrossRefGoogle Scholar
  37. 37.
    J. T. Curnutte, M. L. Karnovsky and B. M. Babior, Manganese dependent NAD(P)H oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement, J. Clin. Invest. 57: 1059 (1976).PubMedCrossRefGoogle Scholar
  38. 38.
    T. G. Gabig and B. M. Babior, The 0-forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme, J. Biol.Chem. 254: 9070 (1979).PubMedGoogle Scholar
  39. 39.
    P. Dri, P. Bellavite, G. Berton and F. Rossi, Interrelationship between oxygen consumption, superoxide anion and hydrogen peroxide formation in phagocytosing guinea pig polymorphonuclear leukocytes, Mol.Cell.Biochem. 23: 109 (1979).PubMedGoogle Scholar
  40. 40.
    R. K. Root and J. A. Metcalf, H202 Release from Human Granulocytes during Phagocytosis, J. Clin. Invest. 60: 1266 (1977).PubMedCrossRefGoogle Scholar
  41. 41.
    R. S. Weening, R. Weyer and D. Roos, Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes, J. Lab.Clin.Med. 85: 245 (1975).PubMedGoogle Scholar
  42. 42.
    B. M. Babior, Superoxide production by phagocytes, Biochem. Biophys.Res.Commun. 91: 222 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    F. Rossi, G. Zabucehi, P. Dri, P. Bellavite and G. Berton, 02 and H202 production during the respiratory burst in alveolar macrophages, in: “Macrophages and lymphocytes. Natu re, Functions and Interaction” Part A. (M.R.Escobar and H. Friedman, eds.) pp. 53–74, Plenum Press, New York (1980).CrossRefGoogle Scholar
  44. 44.
    J. A. Badwey, J. T. Curnutte and M. L. Karnovsky, The enzyme of granulocytes that produces superoxide and peroxide: An elusive pimpernel. N.Engl.J.Med. 300: 1157 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    A. I. Tauber and B. M. Babior, Evidence for hydroxyl radical production by human neutrophils, J.Clin.Invest. 60: 374 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Filippo Rossi
    • 1
  • Paolo Bellavite
    • 1
  • Giorgio Berton
    • 1
  • Pietro Dri
    • 2
  • Giuliano Zabucchi
    • 2
  • R. E. Basford
  1. 1.Istituto di Patologia Generaledell’Università di PadovaVeronaItaly
  2. 2.Istituto di Patologiadell’Università di TriesteVeronaItaly

Personalised recommendations