Advertisement

Cytotoxicity on Tumor Cells of Human Macrophages: Functional Status of Tumor-Associated Effector Cells

  • Alberto Mantovani
  • Claudio Bordignon
  • Andrea Biondi
  • Martino Introna
  • Paola Allavena
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 141)

Abstract

Cells of the monocyte-macrophage series are a major component of the lymphoreticular infiltrate of rodent and human tumors (1–8). Several studies have focused on the in vitro cytotoxicity of rodent mononuclear phagocytes on tumor cells and on the functional status of tumor-associated macrophages (TAM) from murine neoplasms (3, 9–21). In contrast, little attention has been given to the interaction of human monocytes and macrophages with neoplastic cells, and. Human TAM have not been characterized. Here we will summarize results on the tumoricidal activity of human mononuclear phagocytes and we will discuss issues of current interest in our laboratory.

Keywords

Ovarian Tumor Human Monocyte Ovarian Cancer Patient Mononuclear Phagocyte Human Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Evans, Replication of Riley’s plasma enzymes elevating virus in tissue culture: The importance of the cellular composition, J. Gen. Virol. 1: 363 (1967).PubMedGoogle Scholar
  2. 2.
    R. Evans, Macrophages in syngeneic animal tumours, Transplantation 14: 468 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Evans, Tumor macrophages in host immunity to malignancies, in: “The Macrophage in Neoplasia”, M.A. Fink, ed., Academic Press Press, New York (1976).Google Scholar
  4. 4.
    H.F. Pross, and R.S. Kerbel, An assessment of intratumor phagocytic and surface marker-bearing cells in a series of auto-chthonous and early passaged chemically induced murine sarcomas. J. Natl. Cancer Inst. 57: 1157 (1976).PubMedGoogle Scholar
  5. 5.
    I. Carr, Macrophages in human cancer: A review, in: “The Macrophage and Cancer”, K. James, B. McBride and A. Stuart, eds., University of Edinburgh, Edinburgh (1977).Google Scholar
  6. 6.
    G.W. Wood, and K.A. Gollahon, Detection and quantitation of macrophage infiltration into primary human tumors with the use of cell-surface markers, J. Natl. Cancer Inst. 59: 1081 (1977).PubMedGoogle Scholar
  7. 7.
    J.L. Svennevig, M. LBvik, and H. Svaar, Isolation and characterization of lymphocytes and macrophages from solid malignant human tumours, Int. J. Cancer 23: 626 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    I. Lauder, W. Aherne, J. Steward, and R. Sainsbury, Macrophage infiltration of breast tumours: A prospective study. J. Clin. Pathol, 30: 563 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    H.T. Holden, J.S. Haskill, H. Kirchner, and R.B. Herberman, Two functionally distinct anti-tumour cells isolated from primary murine sarcoma virus-induced tumours, J. Immunol. 117: 440 (1976).PubMedGoogle Scholar
  10. 10.
    P. Puccetti, and H.T. Holden, Cytolytic and cytostatic antitumour activities of macrophages from mice injected with murine sarcoma virus, Int. J. Cancer 23: 123 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J.S. Haskill, ADCC effector cells in a murine adenocarcinoma. I. Evidence for blood-borne bone marrow-derived monocytes, Int. J. Cancer 20: 432 (1977).Google Scholar
  12. 12.
    S.W. Russell, and A.T. McIntosh, Macrophages isolated from regressing Moloney sarcomas are more cytotoxic than those recovered from progressing sarcomas, Nature 268: 69 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    S.W. Russell, W.F. Doe, and A.T. McIntosh, Functional characterization of a stable, noncytolytic stage of macrophage activation in tumors, J. Exp. Med. 146: 1511 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Mantovani, Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity, Int. J. Cancer 22: 741 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Evans, and P. Alexander, Mechanisms of extracellular killing of nucleated mammalian cells by macrophages, in: “Immunobiology of the Macrophage”, D.S. Nelson, ed., Academic Press, New York (1976).Google Scholar
  16. 16.
    J.B. Hibbs, The macrophage as a tumoricidal effector cell: A review of in vitro and in vivo studies on the mechanism of the activated macrophage nonspecific cytotoxic reaction, in: “The Macrophage of Neoplasia”, M.A. Fink, ed., Academic Press, New York (1976).Google Scholar
  17. 17.
    R. Keller, Cytostatic and cytocidal effects of activated macrophages, in: “Immunobiology of the Macrophage”, D.S. Nelson, ed., Academic Press, New York (1976).Google Scholar
  18. 18.
    M.S. Birbeck, and R.L. Carter, Observations on the ultra-structure of two hamster lymphomas with particular reference to infiltrating macrophages, Int. J. Cancer 9: 249 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    S.A. Eccles, and P. Alexander, Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature 250: 667 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    J.M. Zarling, and S.S. Tevethia, Transplantation immunity to simian virus 40-transformed cells in tumor-bearing mice. II. Evidence for macrophage participation at the effector level of tumor rejection, J. Natl. Cancer Inst. 50: 149 (1973).PubMedGoogle Scholar
  21. 21.
    A. Mantovani, R. Giavazzi, N. Polentarutti, F. Spreafico, and S. Garattini, Divergent effects of macrophage toxins on growth of primary tumors and lung metastases in mice, Int. J. Cancer 25: 617 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Mantovani,1979. Separation of mononuclear phagocytes by adherence on microexudate-coated plastic, in: “Manual of Macrophage Methodology”, H.B. Herscowitz, H.T. Holden, J.A. Bellanti, and A. Ghaffar, eds., Marcel Dekker, New York, in press.Google Scholar
  23. 23.
    A. Mantovani, G. Peri, N. Polentarutti, G. Bolis, C. Mangioni, and F. Spreafico, Effects on in vitro tumor growth of macrophages isolated from human ascitic ovarian tumors, Int. J. Cancer 23: 157 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Mantovani, P. Allavena, C. Sessa, G. Bolis, and C. Mangioni, Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumors, Int. J. Cancer 25: 573 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Mantovani, N. Polentarutti, G. Peri, Z. Bar Shavit, A. Vecchi, G. Bolis, and C. Mangioni, Cytotoxicity on tumor cells of peripheral blood monocytes and tumor-associated macrophages in patients with ascites ovarian tumors, J. Natl. Cancer Inst. 64: 1307 (1980).PubMedGoogle Scholar
  26. 26.
    A. Mantovani, T.R. Jerrells, J.H. Dean, and R.B. Herberman, Cytolytic and cytostatic activity on tumor cells of circulating human monocytes, Int. J. Cancer 23: 18 (1979)PubMedCrossRefGoogle Scholar
  27. 27.
    A. Mantovani, A. Tagliabue, J.H. Dean, T.R. Jerrells, and R.B. Herberman, Cytolytic activity of circulating human monocytes on transformed and untransformed human fibroblasts, Int. J. Cancer 23: 28 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Mantovani, Z. Bar Shavitz, G. Peri, N. Polentarutti, C. Bordignon, C. Sessa, and C. Mangioni, Natural cytotoxicity on tumor cells of human macrophages obtained from diverse anatomical sites, Clin. Exp. Immunol. 39: 776 (1980).Google Scholar
  29. 29.
    C. Bordignon, R. Avallone, G. Peri, N. Polentarutti, C. Mangioni, and A. Mantovani, Cytotoxicity on tumor cells of human mononuclear phagocytes: defective tumoricidal capacity of alveolar macrophages, Clin. Exp. Illimunol. 41: 336 (1980).Google Scholar
  30. 30.
    J. Jett, A. Mantovani, and R.B. Herberman, Augmentation of monocyte-mediated cytolysis by interferon, Cell. Immunol. 54: 425 (1980).Google Scholar
  31. 31.
    A. Mantovani, J.H. Dean, T.R. Jerrells, and R.B. Herberman, Augmentation of tumoricidal activity of human monocytes and macrophages by lymphokines, Int. J. Cancer 25: 691 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Mantovani, G. Peri, N. Polentarutti, P. Allavena, C. Bordignon, C. Sessa, and C. Mangioni, Natural cytotoxicity on tumor cells of human monocytes and macrophages, in “Natural Cell-Mediated Immunity Against Tumors”, R.B. Herberman, ed., Academic Press, New York (1980).Google Scholar
  33. 33.
    J.R. Ortaldo, G.D. Bonnard, and R.B. Herberman, Cytotoxic reactivity of human lymphocytes cultured in vitro, J.Immunol. 119: 1351 (1977).PubMedGoogle Scholar
  34. 34.
    D.J. Cameron, and W.H. Churchill, Cytotoxicity of human macrophages for tumor cells. Enhancement by human lymphocyte mediators, J. Clin. Invest. 63: 977 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    D.J. Cameron, and W.H.Cburchill,, Cytotoxicity of human macrophages for tumor cells: Enhancement by bacterial lipopolysaccharides (LPS), J. Immunol. 124: 708 (1980).PubMedGoogle Scholar
  36. 36.
    A. Mantovani, V. Caprioli, P. Gritti, and F. Spreafico, Human mature macrophages mediate antibody-dependent cellular cytotoxicity on tumour cells, Transplantation 24: 291 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    G.A. Currie, and D.W. Hedley, Monocytes and macrophages in malignant melanoma. I. Peripheral blood macrophage precursors, Br. J. Cancer 36: 1 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alberto Mantovani
    • 1
  • Claudio Bordignon
    • 1
  • Andrea Biondi
    • 1
  • Martino Introna
    • 1
  • Paola Allavena
    • 1
  1. 1.Istituto di Ricerche Farmacologiche “Mario Negri”MilanItaly

Personalised recommendations