Advertisement

Metal-Liquid Reactions: Corrosion

  • M. J. Pryor
  • R. W. Staehle

Abstract

The aqueous corrosion of metals requires that the metal itself be oxidized while some other species in solution is reduced. The simplest case of metal oxidation is
$$2M + {O_2} = 2MO$$
(1)
This is a gaseous corrosion reaction which has been considered in another chapter in this treatise. For oxidation in solution an analog to Eq. (1) is the reaction
$$M + 2{H_2}O = M{\left( {OH} \right)_2} + {H_2}$$
(2)
Here the oxidation product is a metal hydroxide and the reduction product of hydrogen ions in solution is gaseous hydrogen. It is of course not necessary that an oxide or hydroxide be formed as an oxidation product of the metal. For instance, in the corrosion of lead in sulfuric acid, insoluble lead sulfate is generated as an oxidation product by the reaction
$$Pb + {H_2}S{O_4} = PbS{O_4} + {H_2}$$
(3)
In the most general sense any process which causes a metal to lose its loosely bound electrons in the metallic state to generate a solvated cation in solution is an oxidation process and hence a corrosion process.

Keywords

Corrosion Rate Stress Corrosion Stress Corrosion Crack Passive Film Hydrogen Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pourbaix, Thermodynamiques des Solutions Aqueuses Dilutes, Meinerma, Delft (1945).Google Scholar
  2. 2.
    M. J. Pryor and U. R. Evans, J. Chem. Soc. 1950, 1259, 1266, 1274.Google Scholar
  3. 3.
    U. R. Evans and T. P. Hoar, Proc. Roy. Soc. A 137, 343 (1932).Google Scholar
  4. 4.
    J. N. Agar quoted by U. R. Evans, J. Iron Steel Inst. 141, 219 (1940).Google Scholar
  5. 5.
    U. R. Evans, Corrosion 7, 238 (1951).Google Scholar
  6. 6.
    O. Gatty and E. C. R. Spooner, The Electrode Potential Behavior of Corroding Metals, Clarendon Press (1938), p. 253.Google Scholar
  7. 7.
    M. Stern and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957).Google Scholar
  8. 8.
    R. F. North and M. J. Pryor, Corrosion Sci. 10, 297 (1970).Google Scholar
  9. 9.
    W. E. Campbell and U. B. Thomas, Trans. Electrochem. Soc. 76, 303 (1939).Google Scholar
  10. 10.
    W. H. Anthony, J. Electrochem. Soc. 115, 610 (1968).Google Scholar
  11. 11.
    L. L. Shreir, ed.. Corrosion, Vol. 1, G. Newnes (1963).Google Scholar
  12. 12.
    G. D. Bengough and R. May, J. Inst. Met. 32, 169 (1924).Google Scholar
  13. 13.
    L. Kenworthy and W. G. O. Driscoll, Corr. Tech. 2, 247 (1955).Google Scholar
  14. 14.
    H. W. Pickering, J. Electrochem. Soc. 117, 8 (1970).Google Scholar
  15. 15.
    H. W. Pickering and P. J. Byrne, J. Electrochem. Soc. 116, 1942 (1969).Google Scholar
  16. 16.
    R. G. Blundy and M. J. Pryor, Corrosion Sci. 12, 65 (1972).Google Scholar
  17. 17.
    D. S. Keir and M. J. Pryor, Unpublished work.Google Scholar
  18. 18.
    J. M. Popplewell, R. J. Hart, and J. A. Ford, Corrosion Sci., in press.Google Scholar
  19. 19.
    D. S. Keir, M. J. Pryor, and P. R. Sperry, J. Electrochem. Soc. 114, 771 (1967).Google Scholar
  20. 20.
    H. H. Uhlig, Trans. Electrochem. Soc. 85, 307 (1944).Google Scholar
  21. 21.
    J. Osterwald and H. H. Uhlig, J. Electrochem. Soc. 108, 515 (1961).Google Scholar
  22. 22.
    H. H. Uhlig, Z. Elektrochem. 62, 700 (1958).Google Scholar
  23. 23.
    U. R. Evans, Nature 126, 130 (1930).Google Scholar
  24. 24.
    M. Nagayama and M. Cohen, J. Electrochem. Soc. 109, 781 (1962).Google Scholar
  25. 25.
    K. J. Vetter, Z. Phys. Chem. N.E. 4, 165 (1955).Google Scholar
  26. 26.
    R. P. Frankenthal, J. Electrochem. Soc. 116, 580 (1969).Google Scholar
  27. 27.
    J. Kruger and J. P. Calvert, J. Electrochem. Soc. 114, 43 (1967).Google Scholar
  28. 28.
    M. J. Pryor, J. Electrochem. Soc. 106, 557 (1959).Google Scholar
  29. 29.
    W. G. Whitman and R. P. Russell, Ind. Eng. Chem. 16, 276 (1924).Google Scholar
  30. 30.
    D. S. Keir and M. J. Pryor, J. Electrochem. Soc. 104, 269 (1957).Google Scholar
  31. 31.
    U. R. Evans, J. Inst. Met. 30, 239 (1923).Google Scholar
  32. 32.
    H. Buhler, Métaux Corr. Ind. 26, 141 (1951).Google Scholar
  33. 33.
    W. E. Harvey, Metals & Alloys 1, 458 (1929–30).Google Scholar
  34. 34.
    M. J. Pryor, Nature 178, 1245 (1956).Google Scholar
  35. 35.
    R. B. Hoxing and C. F. Prutton, Corrosion 5, 330 (1949).Google Scholar
  36. 36.
    M. Cohen, W. R. Thomas, and P. R. Sereda, Can. J. Tech. 25, 435 (1951).Google Scholar
  37. 37.
    T. P. Hoar, Trans. Faraday Soc. 30, 472 (1934).Google Scholar
  38. 38.
    J. D. Sudbury, O. L. Riggs, and D. A. Shock, Corrosion 16, 91 (1960).Google Scholar
  39. 39.
    Z. A. Foroulis, Corrosion Sci. 5, 383 (1965).Google Scholar
  40. 40.
    N. D. Tomashov and G. P. Chernova, C.R. Acad. Sci. USSR 89, 121 (1953).Google Scholar
  41. 41.
    N. D. Tomashov, R. M. Altovsky, and A. G. Arakelov, C.R. Acad. Sci. USSR 121, 885 (1958).Google Scholar
  42. 42.
    M. Stern and H. Wissenberg, J. Electrochem. Soc. 106, 755, 759 (1959).Google Scholar
  43. 43.
    N. D. Greene, C. R. Bishop, and M. Stern, J. Electrochem. Soc. 108, 836 (1961).Google Scholar
  44. 44.
    M. J. Pryor and M. Cohen, J. Electrochem. Soc. 100, 203 (1953).Google Scholar
  45. 45.
    M. J. Pryor and M. Cohen, J. Electrochem. Soc. 98, 263 (1951).Google Scholar
  46. 46.
    J. E. O. Mayne and M. J. Pryor, J. Chem. Soc. 1949, 1831.Google Scholar
  47. 47.
    J. E. O. Mayne, J. W. Menter, and M. J. Pryor, J. Chem. Soc. 1950, 3229.Google Scholar
  48. 48.
    J. E. O. Mayne and J. W. Menter, J. Chem. Soc. 1954, 103.Google Scholar
  49. 49.
    M. Cohen and A. F. Beck, Z. Elektrochem. 62, 696 (1958)Google Scholar
  50. 50.
    D. M. Brasher and E. R. Stove, Chem. & Ind. 1952, 171.Google Scholar
  51. 51.
    M. J. Pryor, Corrosion 9, 467 (1953).Google Scholar
  52. 52.
    R. B. Mears and R. H. Brown, J. Electrochem. Soc. 97, 75 (1950).Google Scholar
  53. 53.
    C. Edeleanu and U. R. Evans, Trans. Faraday Soc. 65, 683 (1949).Google Scholar
  54. 54.
    K. F. Lorking, Nature 208, 778 (1965).Google Scholar
  55. 55.
    M. A. Heine and M. J. Pryor, J. Electrochem. Soc. 114, 1001 (1967).Google Scholar
  56. 56.
    J. B. Cotton and I. R. Scholes, British Corrosion J. 2, 1 (1967).Google Scholar
  57. 57.
    I. Dugdale and J. B. Cotton, Corrosion Sci. 3, 69 (1963).Google Scholar
  58. 58.
    N. Hackerman and R. M. Hurd, in First Int. Congr. on Metallic Corrosion, Butterworths, London (1962), p. 166.Google Scholar
  59. 59.
    L. Horner and F. Röttger, Korrosion 16, 57 (1963).Google Scholar
  60. 60.
    L. I. Antropov, Corrosion Sci. 7, 607 (1967).Google Scholar
  61. 61.
    F. Zucchi, G. L. Zucchini, G. Trabanelli, and L. Baldi, Electrochim. Metallorum 1, 400 (1966).Google Scholar
  62. 62.
    L. Cavallero, L. Felloni, G. Trabanelli, and F. Pulidiri, Electrochim. Acta 9, 485 (1964).Google Scholar
  63. 63.
    J. E. O. Mayne, Research 6, 278 (1952).Google Scholar
  64. 64.
    J. E. O. Mayne, J. Oil & Color Chemists Assoc. 32, 481 (1949);Google Scholar
  65. 64a.
    J. E. O. Mayne, J. Oil & Color Chemists Assoc. 34, 473 (1951).Google Scholar
  66. 65.
    H. G. Cole and L. F. LeBrocq, J. Appl. Chem. 5, 149, 197 (1955).Google Scholar
  67. 66.
    J. E. O. Mayne and D. Van Rooyen, J. Appl. Chem. 4, 384 (1954).Google Scholar
  68. 67.
    M. J. Pryor, J. Electrochem. Soc. 101, 112 (1954).Google Scholar
  69. 68.
    M. J. Pryor, R. J. Hogan, and F. B. Patten, J. Electrochem. Soc. 105, 9 (1958).Google Scholar
  70. 69.
    A. T. Gwathmey and A. F. Benton, Trans. Electrochem. Soc. 77, 211 (1940).Google Scholar
  71. 70.
    H. Leidheiser and A. T. Gwathmey, Trans. Electrochem. Soc. 91, 95 (1947).Google Scholar
  72. 71.
    M. J. Pryor and U. R. Evans, J. Chem. Soc. 1949, 3330.Google Scholar
  73. 72.
    M. A. Heine, D. S. Keir, and M. J. Pryor, J. Electrochem. Soc. 112, 1 (1965).Google Scholar
  74. 73.
    R. F. North and M. J. Pryor, Corrosion Sci. 10, 297 (1970).Google Scholar
  75. 74.
    M. J. Pryor, Z. Elektrochem. 62, 782 (1958).Google Scholar
  76. 75.
    D. J. O’Connor, P. G. Johansen, and A. S. Buchanan, Trans. Faraday Soc. 52, 229 (1956).Google Scholar
  77. 76.
    H. W. Pickering and R. P. Frankenthal, J. Electrochem. Soc. 119, 1304, 1927 (1972).Google Scholar
  78. 77.
    N. Sato, T. Nakayama, K. Kudo, and M. Sakashita, Trans. Japan Inst. Metals 13, 103 (1972).Google Scholar
  79. 78.
    K. J. Vetter and H. H. Strehblow, Ber. Bunsenges. 74, 449, 1024 (1970);Google Scholar
  80. 78a.
    K. J. Vetter and H. H. Strehblow, Ber. Bunsenges. 75, 822 (1971).Google Scholar
  81. 79.
    R. F. Steigerwald, Corrosion 22, 107 (1966).Google Scholar
  82. 80.
    B. E. Wilde and E. Williams, J. Electrochem. Soc. 118, 1057 (1971).Google Scholar
  83. 81.
    R. Piontelli, Electrochim. Metall. 1966 (1), 1.Google Scholar
  84. 82.
    M. B. Ives, in Localized Corrosion (R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds.), NACE, Houston, Texas (1974).Google Scholar
  85. 83.
    J. Kruger, J. Electrochem. Soc. 108, 504 (1961).Google Scholar
  86. 84.
    C. J. Mauvais, R. M. Latanision, and A. W. Ruff Jr., J. Electrochem. Soc. 117, 903 (1970).Google Scholar
  87. 85.
    J. H. Payer and R. W. Staehle, in Corrosion Fatigue: Chemistry, Mechanics, and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  88. 86.
    H. W. Pickering, Acta Met. 13, 437 (1965).Google Scholar
  89. 87.
    N. F. Fiore and C. L. Bauer, Binding of solute atoms to dislocations, Progress in Materials Science 13, No. 2 (B. Chalmers and W. Hume-Rothery, eds.), Pergamon Press, London (1967).Google Scholar
  90. 88.
    K. Elayaperumal, P. K. De, and J. Balachandra, Corrosion 28, 270 (1972).Google Scholar
  91. 89.
    J. P. Hirth, Met. Trans. 3, 3047 (1972).Google Scholar
  92. 90.
    K. Osozawa and H. J. Engell, Corrosion Sci. 6, 389 (1966).Google Scholar
  93. 91.
    G. Ugiansky, Unpublished results, National Bureau of Standards, Washington, DC.Google Scholar
  94. 92.
    F. Du, M. S. Thesis, The Ohio State University, 1973.Google Scholar
  95. 93.
    K. T. Aust and O. Iwao, Segregation and corrosion at grain boundaries, in Localized Corrosion (R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds.), NACE, Houston, Texas (1974).Google Scholar
  96. 94.
    J. H. Westbrook, Metallurg. Rev. 9, 415 (1964).Google Scholar
  97. 95.
    J. H. Westbrook, Interfaces Conference, Butterworths, London (1969).Google Scholar
  98. 96.
    M. C. Inman and H. R. Tipler, Metallurg. Rev. 8, 105 (1963).Google Scholar
  99. 97.
    J. R. Low Jr., Trans. TMS-AIME 245, 2481 (1969).Google Scholar
  100. 98.
    P. V. Ramasubramanian and D. F. Stein, Met. Trans. 4, 1735 (1973).Google Scholar
  101. 99.
    D. F. Stein, A. Joshi, and R. P. LaForce, Trans. ASM 62, 777 (1969).Google Scholar
  102. 100.
    M. P. Seah and E. D. Hondros, Proc. R. Soc. Lond. A 335, 191 (1973).Google Scholar
  103. 101.
    J. W. Spretnak and R. Speiser, in Stress Corrosion Cracking and Embrittlement (W. D. Robertson, ed.), Wiley, New York (1956).Google Scholar
  104. 102.
    H. L. Marcus and P. W. Palmberg, Trans. AIME 248, 1664, (1969).Google Scholar
  105. 103.
    C. J. McMahon, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  106. 104.
    K. Yoshiro and C. J. McMahon, Met. Trans. 5, 363 (1974).Google Scholar
  107. 105.
    J. S. Armijo and B. E. Wilde, Corrosion Sci. 8, 649 (1968).Google Scholar
  108. 106.
    R. L. Cowan II and C. S. Tedmon Jr., in Advances in Corrosion Science and Technology, Vol. 3 (M. G. Fontana and R. W. Staehle, eds.), Plenum Press, New York (1973).Google Scholar
  109. 107.
    R. L. Cowan II and G. M. Gordon, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  110. 108.
    R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds., Localized Corrosion, NACE, Houston, Texas (1975).Google Scholar
  111. 109.
    A. J. Sedriks, P. W. Slattery, and E. N. Pugh, Trans. ASM 62, 238 (1969).Google Scholar
  112. 110.
    G. M. Gordon, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  113. 111.
    J. Hochmann, A. Desestret, P. Jolly, and R. Mayard, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  114. 112.
    L. Columbier and J. Hochmann, Stainless and Heat Resisting Steels. Edward Arnold Publishers, London (1967).Google Scholar
  115. 113.
    W. T. DeLong, Metals Progress 77, 98 (1960).Google Scholar
  116. 114.
    F. H. Beck, The Ohio State University.Google Scholar
  117. 115.
    M. G. Fontana and F. H. Beck, Progress Report to Alloy Castings Institute for 1 January 1963–30 April 1963, Report No. 47.Google Scholar
  118. 116.
    G. Wranglen, in Localized Corrosion (R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds.), NACE, Houston, Texas (1975).Google Scholar
  119. 117.
    G. Eklund, in Localized Corrosion (R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds.), NACE, Houston, Texas (1975).Google Scholar
  120. 118.
    G. Eklund, Jernkont. Ann. 154, 21 (1970).Google Scholar
  121. 119.
    M. G. Fontana, Unpublished results.Google Scholar
  122. 120.
    W. A. Tiller, R. J. Asaro, and A. J. West Jr., in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  123. 121.
    C. J. Cron, J. H. Payer, and R. W. Staehle, Corrosion. 27, 1 (1971).Google Scholar
  124. 122.
    J. H. Payer and R. W. Staehle, in Localized Corrosion (R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds.), NACE, Houston, Texas (1975).Google Scholar
  125. 123.
    R. M. Latanision and R. W. Staehle, in Fundamental Aspects of Stress Corrosion Cracking (R. W. Staehle, A. J. Forty, and D. Van Rooyen, eds.), NACE, Houston, Texas (1967).Google Scholar
  126. 124.
    L. Yang, G. T. Home, and G. M. Pound, in Physical Metallurgy of Stress Corrosion Fracture (T. N. Rhodin, ed.), Interscience, New York (1959).Google Scholar
  127. 125.
    K. N. Goswami and R. W. Staehle, Electrochim. Acta. 16, 1895 (1971).Google Scholar
  128. 126.
    T. Murata, M.S. Thesis, Department of Metallurgical Engineering, The Ohio State University.Google Scholar
  129. 127.
    T. P. Hoar, in Fundamental Aspects of Stress Corrosion Cracking (R. W. Staehle, A. J. Forty, and D. Van Rooyen, eds.), NACE, Houston, Texas (1967).Google Scholar
  130. 128.
    T. Murata, Ph.D. Dissertation, Department of Metallurgical Engineering, The Ohio State University.Google Scholar
  131. 129.
    A. R. Despic, R. G. Raicheff, and J. O. M. Bockris, J. Chem. Phys. 49, 926 (1968).Google Scholar
  132. 130.
    P. R. Swann, in Theory of Stress Corrosion Cracking (J. C. Scully, ed.), NATO (1971), p. 113.Google Scholar
  133. 131.
    P. R. Swann, in Localized Corrosion (R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds.), NACE, Houston, Texas (1975).Google Scholar
  134. 132.
    R. Bakish and W. D. Robertson, Acta Met. 3, 513 (1955).Google Scholar
  135. 133.
    N. A. Nielsen, Corrosion 20, 1056 (1964).Google Scholar
  136. 134.
    M. F. Dean, F. H. Beck, and R. W. Staehle, Corrosion 23, 192 (1967).Google Scholar
  137. 135.
    J. D. Harston and J. C. Scully, Corrosion 25, 493 (1969).Google Scholar
  138. 136.
    R. M. Latanision and A. R. C. Westwood, in Advances in Corrosion Science and Technology. Vol. 1 (M. G. Fontana and R. W. Staehle, eds.), Plenum Press, New York (1970).Google Scholar
  139. 137.
    A. R. C. Westwood and N. S. Stoloff, Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1965).Google Scholar
  140. 138.
    I. R. Kramer and A. Kumar, in Corrosion Fatigue: Chemistry. Mechanics, and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  141. 139.
    J. T. Fourie, in Corrosion Fatigue: Chemistry Mechanics, and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  142. 140.
    R. M. Latanision, in Corrosion Fatigue: Chemistry, Mechanics, and Micro-structure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  143. 141.
    R. M. Latanision and R. W. Staehle, Acta Met. 17, 307 (1969).Google Scholar
  144. 142.
    I. R. Kramer, accepted for Corrosion Journal. Google Scholar
  145. 143.
    R. M. Latanision, H. Opperhauser, and A. R. C. Westwood, in Science of Hardness Testing and Its Research Applications (H. Conrad and J. Westbrook, eds.), American Society for Metals (1975), p. 43.Google Scholar
  146. 144.
    I. M. Bernstein and A. W. Thompson, eds., Hydrogen in Metals, American Society for Metals (1973).Google Scholar
  147. 145.
    R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds., Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys. NACE, Houston, Texas (1975).Google Scholar
  148. 146.
    M. P. Bastien, L’Hydrogène dans les Métaux, Editions Science et Industrie, Paris (1972).Google Scholar
  149. 147.
    M. P. Bastien, Ber. Bunsenges. Phys. Chem. 76(8), 705 (1972).Google Scholar
  150. 148.
    W. Beck, E. J. Jankowsky, and P. Fischer, Hydrogen Stress Cracking of High Strength Steels. NADC-MA-7140 Naval Air Development Center, Warminster, Pennsylvania.Google Scholar
  151. 149.
    D. P. Smith, Hydrogen in Metals. University of Chicago Press (1948).Google Scholar
  152. 150.
    N. A. Galaktinova, Hydrogen in Metals. State Publishing Organization for Ferrous and Nonferrous Metals, Moscow (1959).Google Scholar
  153. 151.
    A. R. Troiano and J. P. Fidelle, in L’Hydrogène dans les Métaux (1972), Vol. 1, p. 31.Google Scholar
  154. 152.
    P. Cotteril, The hydrogen embrittlement of metals, in Progress in Materials Science. Vol. 9 (B. Chalmers, ed.), Pergamon Press, New York (1961).Google Scholar
  155. 153.
    M. Smialowski, Hydrogen in Steel. Pergamon Press, Oxford, and Addison-Wesley Publishing Co., Reading, Massachusetts (1962).Google Scholar
  156. 154.
    R. P. Jewett, R. J. Walter, W. T. Chandler, and R. P. Frohmberg, Hydrogen environment embrittlement of metals, NASA-Cr-2163 (March, 1973).Google Scholar
  157. 155.
    G. A. Nelson, Proc. Am. Petroleum Inst. 45, 190 (1965).Google Scholar
  158. 156.
    M. Pourbaix, Lectures on Electrochemical Corrosion, Plenum Press, New York (1973).Google Scholar
  159. 157.
    B. Stalinski, Ber. Bunsenges. Phys. Chem. 76 (8), 724 (1972).Google Scholar
  160. 158.
    T. B. Flanagan and W. A. Oates, Ber. Bunsenges. Phys. Chem. 76 (8), 706 (1972).Google Scholar
  161. 159.
    H. K. Birnbaum and C. A. Wert, Ber. Bunsenges. Phys. Chem. 76 (8), 806 (1972).Google Scholar
  162. 160.
    R. Speiser, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  163. 161.
    R. A. Oriani, Acta Met. 18, 147 (1970).Google Scholar
  164. 162.
    R. A. Oriani, Ber. Bunsenges. Phys. Chem. 76 (8), 848 (1972).Google Scholar
  165. 163.
    A. R. Troiano, in Hydrogen in Metals (I. M. Bernstein and A. W. Thompson, eds.), American Society for Metals (1973).Google Scholar
  166. 164.
    J. M. West, Electrodeposition and Corrosion Processes. Van Nostrand, New York (1965).Google Scholar
  167. 165.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum Press, New York (1970).Google Scholar
  168. 166.
    R. D. McCright and R. W. Staehle, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  169. 167.
    T. P. Radhakrishnan and L. Shreir, Electrochim. Acta 11, 1007 (1966).Google Scholar
  170. 168.
    M. Henthorne, Chm., Localized CorrosionCause of Metal Failure. STP-156, ASTM, Philadelphia, Pennsylvania (1972).Google Scholar
  171. 169.
    Advances in the Technology of Stainless Steels and Related Alloys, ASTM-STP-369, ASTM, Philadelphia, Pennsylvania.Google Scholar
  172. 170.
    Intergranular Corrosion of Chromium-Nickel Stainless Steel—Final Report, Report No. 138, Welding Research Council, New York.Google Scholar
  173. 171.
    I. A. Levin, ed., Intercrystalline Corrosion of Corrosion of Metals under Stress. Consultants Bureau, New York (1962).Google Scholar
  174. 172.
    H. F. Ebling and M. A. Scheil, in Advances in the Technology of Stainless Steels and Related Alloys. ASTM-STP-369, ASTM, Philadelphia, Pennsylvania.Google Scholar
  175. 173.
    B. W. Lifka and D. O. Sprowls, in Advances in the Technology of Stainless Steels and Related Alloys, ASTM-STP-369, ASTM, Philadelphia, Pennsylvania.Google Scholar
  176. 174.
    R. M. Latanision and H. Opperhauser, Met. Trans. 5, 483 (1974).Google Scholar
  177. 175.
    R. Brown and D. O. Sprowls, in Fundamental Aspects of Stress Corrosion Cracking (R. W. Staehle, A. J. Forty, and D. Van Rooyn, eds.), NACE, Houston, Texas (1967).Google Scholar
  178. 176.
    H. L. Logan, The Stress Corrosion of Metals. Wiley, New York (1966).Google Scholar
  179. 177.
    J. C. Scully, ed., The Theory of Stress Corrosion Cracking in Alloys. NATO Scientific Affairs Division, Brussels (1971).Google Scholar
  180. 178.
    B. F. Brown, ed., Stress Corrosion Cracking in High Strength Steels in Titanium and Aluminum Alloys. Naval Research Laboratory, USGPO (1972).Google Scholar
  181. 179.
    O. Devereux, A. J. McEvily, and R. W. Staehle, eds., Corrosion Fatigue: Chemistry. Mechanics, and Microstructure, NACE, Houston, Texas (1973).Google Scholar
  182. 180.
    R. W. Staehle, A. J. Forty, and D. Van Rooyen, eds., Fundamental Aspects of Stress Corrosion Cracking. NACE, Houston, Texas (1969).Google Scholar
  183. 181.
    M. O. Speidel and M. V. Hyatt, in Advances in Corrosion Science and Technology. Vol. 2 (R. W. Staehle and M. G. Fontana, eds.), Plenum Press, New York (1972).Google Scholar
  184. 182.
    M. J. Blackburn, J. A. Feeney, and T. R. Beck, in Advances in Corrosion Science and Technology, Vol. 3 (R. W. Staehle and M. G. Fontana, eds.), Plenum Press, New York (1973).Google Scholar
  185. 183.
    E. E. Denhard, Corrosion 16, 359t (1960).Google Scholar
  186. 184.
    B. F. Brown and C. D. Beacham, Corrosion Science 5, 795 (1965).Google Scholar
  187. 185.
    R. W. Cochran and R. W. Staehle, Corrosion 24, 369 (1968).Google Scholar
  188. 186.
    A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials. Wiley, New York (1967).Google Scholar
  189. 187.
    Proceedings of International Congress on Fracture in Munich. 1973, Verein Deutscher Eisenhüttenleute, Düsseldorf.Google Scholar
  190. 188.
    P. L. Pratt, ed., Fracture 1965, Chapman and Hall, London (1969).Google Scholar
  191. 189.
    D. W. Hoeppner, Fracture Prevention and Control, American Society for Metals (1972).Google Scholar
  192. 190.
    Fracture Toughness Testing and Its Application. STP-381, ASTM, Philadelphia, Pennsylvania (1964).Google Scholar
  193. 191.
    Electron Fractography, STP-436, ASTM, Philadelphia, Pennsylvania (1967).Google Scholar
  194. 192.
    Stress Analysis of Growth of Cracks. Part I, STP-513, Part II, STP-514, ASTM, Philadelphia, Pennsylvania (1971).Google Scholar
  195. 193.
    Fracture Analysis, Part I, STP-559, Part II, STP-560, ASTM, Philadelphia, Pennsylvania (1973).Google Scholar
  196. 194.
    G. C. Sih, Handbook of Stress Intensity Factors. Institute of Fracture and Solid Mechanics, Bethlehem, Pennsylvania (1973).Google Scholar
  197. 195.
    P. P. Puzak and E. A. Lange, Fracture toughness characteristics of the new weldable steels of 180 to 210 ksi yield strengths, NRL report 6951, Naval Research Laboratory, Washington, D.C. (1969).Google Scholar
  198. 196.
    C. S. Carter, Met. Trans. 1, 1551 (1970).Google Scholar
  199. 197.
    W. R. Wearmouth, G. P. Dean, and R. N. Parkins, Corrosion 29, 251 (1973).Google Scholar
  200. 198.
    M. Takano and R. W. Staehle, submitted to Corrosion J. Google Scholar
  201. 199.
    Manual on Low Cycle Fatigue Testing. STP-465, ASTM, Philadelphia, Pennsylvania (1970).Google Scholar
  202. 200.
    Cyclic Stress-Strain Behavior-Analysis. Experimentation, and Fatigue Prediction, STP-519, ASTM, Philadelphia, Pennsylvania (1973).Google Scholar
  203. 201.
    A. F. Madayag, Metal Fatigue: Theory and Design. Wiley, New York (1969).Google Scholar
  204. 202.
    Handbook of Fatigue Testing, STP-566, ASTM, Philadelphia, Pennsylvania (1974).Google Scholar
  205. 203.
    Fatigue at Elevated Temperatures. STP-520, ASTM, Philadelphia, Pennsylvania (1973).Google Scholar
  206. 204.
    W. P. Koster, M. Field, and J. F. Kahles, Surface integrity of machined structural components, AFML-TR-70–11 (March, 1970).Google Scholar
  207. 205.
    D. Bowers and R. W. Staehle, Unpublished results, The Ohio State University.Google Scholar
  208. 206.
    J. M. Barsom, Engr. Fracture Mechanics 3(1), 15 (1971).Google Scholar
  209. 207.
    J. M. Barsom, in Corrosion Fatigue: Chemistry. Mechanics, and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  210. 208.
    M. O. Speidel, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  211. 209.
    A. J. Forty, in Physical Metallurgy of Stress Corrosion Fracture (T. N. Rhodin, ed.), Interscience, New York (1959).Google Scholar
  212. 210.
    A. J. McEvily, Jr. and A. P. Bond, J. Electrochem. Soc. 112, 131 (1965).Google Scholar
  213. 211.
    E. N. Pugh, in The Theory of Stress Corrosion Cracking in Alloys (J. C. Scully, ed.), NATO Scientific Affairs Division, Brussels (1971).Google Scholar
  214. 212.
    E. W. Pugh, J. V. Craig, and A. J. Sedriks, in Fundamental Aspects of Stress Corrosion Cracking (R. W. Staehle, A. J. Forty, and D. Van Rooyn, eds.), NACE, Houston, Texas (1967).Google Scholar
  215. 213.
    R. W. Staehle, in The Theory of Stress Corrosion Cracking in Alloys (J. C. Scully, ed.), NATO Scientific Affairs Division, Brussels (1971).Google Scholar
  216. 214.
    R. W. Staehle, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  217. 215.
    H. J. Engell, in The Theory of Stress Corrosion Cracking in Alloys (J. C. Scully, ed.), NATO Scientific Affairs Division, Brussels (1971).Google Scholar
  218. 216.
    D. A. Vermilyea, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  219. 217.
    H. H. Uhlig, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  220. 218.
    R. A. Oriani, Ber. Bunsenges. Phys. Chem. 76 (8), 848 (1972).Google Scholar
  221. 219.
    R. A. Oriani in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  222. 220.
    J. J. Gilman, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  223. 221.
    R. M. Latanision and R. W. Staehle, Acta Met. 17, 307 (1969).Google Scholar
  224. 222.
    H. R. Copson, in Physical Metallurgy of Stress Corrosion Fracture (T. N. Rhodin, ed.) Interscience, New York (1959).Google Scholar
  225. 223.
    D. H. Thompson and A. W. Tracy, Trans. AIME 185, 100 (1949).Google Scholar
  226. 224.
    H. H. Uhlig and J. P. Sava, Corrosion Science 5, 291 (1965).Google Scholar
  227. 225.
    H. H. Lee and H. H. Uhlig, J. Electrochem. Soc. 117, 18 (1970).Google Scholar
  228. 226.
    W. L. Williams, Corrosion 13, 539t (1957).Google Scholar
  229. 227.
    G. Kerns and R. W. Staehle, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  230. 228.
    P. McIntyre, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  231. 229.
    H. H. Uhlig and E. W. Cook Jr., J. Electrochem. Soc. 116, 173 (1969).Google Scholar
  232. 230.
    G. G. Hancock and H. H. Johnson, Trans. AIME 236, 513 (1966).Google Scholar
  233. 231.
    G. Edmunds, Symposium on Stress Corrosion Cracking of Metals, ASTM-AIME (1945).Google Scholar
  234. 232.
    D. O. Sprowls and R. H. Brown, Metal Progress 81, 79 (1962).Google Scholar
  235. 233.
    M. Wang and R. W. Staehle, L’Hydrogène dans les Métaux, Vol. 2, Editions Science et Industrie, Paris (1972).Google Scholar
  236. 234.
    Interpretive Report on Effects of Hydrogen in Pressure Vessel Steels, in 3 sections: (1) Basic and research aspects, by C. G. Interrante; (2) Action of hydrogen on steels at high temperature and pressure, by G. A. Nelson; and (3) Practical aspects of hydrogen damage at atmospheric temperature, by C. M. Hudgins, Jr., WRC Report No. 145, (October, 1969).Google Scholar
  237. 235.
    A. R. Troiano, Trans. ASM 52, 54 (1960).Google Scholar
  238. 236.
    B. E. Wilde, United States Steel Corp.Google Scholar
  239. 237.
    M. Smialowski, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (R. W. Staehle, J. Hochmann, J. E. Slater, and R. D. McCright, eds.), NACE, Houston, Texas (1975).Google Scholar
  240. 238.
    H. K. Birnbaum, M. Grossbeck, and S. Gahr, in Hydrogen in Metals (I.M. Bernstein and A. W. Thompson, eds.), American Society for Metals (1973).Google Scholar
  241. 239.
    W. E. Berry, E. L. White, and F. W. Funk, Corrosion 19, 253t (1963).Google Scholar
  242. 240.
    Corrosion of Zirconium Alloys, AEC-TR-6978.Google Scholar
  243. 241.
    R. M. Latanision and R. W. Staehle, Scripta Met. 2, 667 (1968).Google Scholar
  244. 242.
    W. Rostoker, J. M. McCaughey, and H. Markus, Embrittlement by Liquid Metals. Reinhold, New York (1970).Google Scholar
  245. 243.
    C. M. Preece and A. R. C. Westwood, Trans. ASM, 62, 418 (1969).Google Scholar
  246. 244.
    M. H. Kamdar and A. R. C. Westwood, Acta Met. 16, 1335 (1968).Google Scholar
  247. 245.
    M. H. Kamdar and A. R. C. Westwood, Phil Mag. 15A (8th Series), 641 (1967).Google Scholar
  248. 246.
    R. B. Waterhouse, Fretting Corrosion. Pergamon Press, Oxford (1972).Google Scholar
  249. 247.
    D. W. Hoeppner and G. L. Goss, in Corrosion Fatigue: Chemistry. Mechanics. and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  250. 248.
    The Role of Cavitation in Mechanical Failures (T. R. Shives and W. A. Williard, eds.), NBS Special Publication No. 394, Mechanical Failure Prevention Group, U.S. Department of Commerce.Google Scholar
  251. 249.
    F. H. Hammit, in Corrosion Fatigue: Chemistry, Mechanics, and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar
  252. 250.
    S. G. Young and J. C. Freche, in Corrosion Fatigue: Chemistry. Mechanics, and Microstructure (O. Devereux, A. J. McEvily, and R. W. Staehle, eds.), NACE, Houston, Texas (1973).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • M. J. Pryor
    • 1
  • R. W. Staehle
    • 2
  1. 1.Metals Research LaboratoriesOlin CorporationNew HavenUSA
  2. 2.Department of Metallurgical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations