Advertisement

Gas-Solid Reactions—Oxidation

  • Karl Hauffe

Abstract

The oxidation of metals and alloys at elevated temperatures with fairly thick oxide layers (≥ 10-4 cm) is often caused by diffusion processes through the oxide layer, resulting in a parabolic rate law, first reported by Tammann(1) and later also noted by Pilling and Bed-worth(2) and interpreted by Wagner.(3) Diffusion-controlled oxidation, however, is detected only if a coherent and pore-free layer of the reaction product, e.g., an oxide, sulfide, or halogenide, is formed and if phase-boundary reactions are fast, i.e., at established equilibria at both interfaces.

Keywords

Oxide Layer Oxygen Pressure Cation Vacancy Transference Number Migrate Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Tammann, Z. Anorg. Allg. Chem. 111, 78 (1920).Google Scholar
  2. 2.
    N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29, 529 (1923).Google Scholar
  3. 3.
    C. Wagner, Z. Phys. Chem. (B) 21, 25 (1933):Google Scholar
  4. 3a.
    C. Wagner, Z. Phys. Chem. (B) 32, 447 (1936);Google Scholar
  5. 3b.
    C. Wagner, in Atom Movements, ASM, Cleveland, Ohio (1951), p. 153ff.Google Scholar
  6. 4.
    J. Bénard, L’Oxydation des Métaux, Vol. 1, pp. 16–87, Gauthier-Villars, Paris (1962).Google Scholar
  7. 5a.
    K.-L. Tseitlin, J. Appl. Chem. USSR 27, 889 (1954);Google Scholar
  8. 5.
    K.-L. Tseitlin, J. Appl. Chem. USSR 28, 467 (1955);Google Scholar
  9. 5a.
    K.-L. Tseitlin, J. Appl. Chem. USSR 29, 253, 1281 (1956);Google Scholar
  10. 5.
    K.-L. Tseitlin, J. D. McKinley, J. Chem. Phys. 40, 120 (1964);Google Scholar
  11. J. D. McKinley and K. E. Shuler, J. Chem. Phys. 28, 1207 (1958).Google Scholar
  12. 6.
    K. Hauffe and J. Hinrichs, Werkstoffe & Korr. 21, 954 (1970);Google Scholar
  13. 6a.
    J. Halfdanarson and K. Hauffe, Werkstoffe & Korr. 24, 8 (1973).Google Scholar
  14. 7.
    W. E. Campbell and U. B. Thomas, Trans. Electrochem. Soc. 91, 345 (1947).Google Scholar
  15. 8.
    J. T. Waber, J. Chem. Phys. 20, 734 (1952).Google Scholar
  16. 9.
    E. A. Gulbransen and K. F. Andrew, Metals Trans. 185, 741 (1949);Google Scholar
  17. 9a.
    P. Kofstad and K. Hauffe, Werkstoffe & Korr, 7, 642 (1956);Google Scholar
  18. 9b.
    P. Kofstad, K. Hauffe, and H. Kjöllesdal, Acta Chem. Scand. 12, 239 (1958).Google Scholar
  19. 10.
    K. Hauffe and P. Kofstad, Z. Elektrochem. 59, 399 (1955);Google Scholar
  20. 10a.
    J. L. Meijering and M. L. Verheijke, Acta Met. 7, 331 (1959).Google Scholar
  21. 11.
    G. Tammann and W. Köster, Z. Anorg. Allgem. Chem. 123, 196 (1922).Google Scholar
  22. 12.
    N. F. Mott, J. Inst. Metals 65, 333 (1939).Google Scholar
  23. 13.
    F. P. Fehlner and N. F. Mott, Oxidation of Metals 2, 59 (1970).Google Scholar
  24. 14.
    U. R. Evans, Trans. Electrochem. Soc. 91, 547 (1947);Google Scholar
  25. 14a.
    U. R. Evans, Rev. Pure Appl. Chem. 5, 1 (1955).Google Scholar
  26. 15.
    J. Moreau and J. Bénard, Compt. Rend. 248, 1658 (1959);Google Scholar
  27. J. Bénard, J. Moreau, and F. Grönlund, Compt. Rend. 246, 756 (1958).Google Scholar
  28. 16.
    J. Bardolle and J. Bénard, Rev. Met. 49, 613 (1952).Google Scholar
  29. 17.
    J. Bénard, F. Grönlund, J. Oudar, and M. Duret, Z. Elektrochem. 63, 799 (1959);Google Scholar
  30. 17.
    J. Bénard, F. Grönlund, J. Oudar, and M. Duret, Z. Elektrochem. 63, 799 (1959);Google Scholar
  31. 17a.
    F. Grönlundf. F. Grönlund, J. Chim. Physique 53, 660 (1956).Google Scholar
  32. 18.
    F. W. Young, Jr., J. V. Cathcart, and A. T. Gwathmey, Acta Met. 4, 145 (1956).Google Scholar
  33. 19.
    A. T. Gwathmey and K. R. Lawless, The influence of crystal orientation on the oxidation of metals, in The Surface Chemistry of Metals and Semiconductors (H. C. Gatos, ed.), p. 483, John Wiley, New York (1959).Google Scholar
  34. 20.
    J. Frenkel, J. Physik 35, 652 (1926).Google Scholar
  35. 21.
    C. Tubandt and S. Eggert, Z. Anorg. Allg. Chem. 115, 105 (1921).Google Scholar
  36. 22.
    K. Hauffe, Reaktionen in und an festen Stoffen, 2nd ed., p. 178ff, Springer-Verlag, Berlin (1966).Google Scholar
  37. 23.
    K. Hauffe and A. Rahmel, Z. Phys. Chem. 199, 152 (1952).Google Scholar
  38. 24.
    W. Jost, Platzwechsel in Kristallen, in Halbleiterprobleme (W. Schottky, ed.), Vol. 2, p. 145ff, Vieweg & Sohn, Braunschweig (1955).Google Scholar
  39. 25.
    A. B. Lidiard, in Handbuch der Physik (S. Flügge, ed.), Vol. 20, p. 246, Springer-Verlag, Berlin (1958).Google Scholar
  40. 26.
    K. Hauffe and W. Schottky, Deckschichtbildung auf Metallen, in Halbleiterprobleme (W. Schottky, ed.), Vol. 5, p. 203ff, Vieweg & Sohn, Braunschweig (1960).Google Scholar
  41. 27.
    W. Jost, Diffusion und chemische Reaktion in festen Stoffen, p. 149, Steinkopff, Dresden-Leipzig (1937).Google Scholar
  42. 28.
    T. P. Hoar and L. E. Price, Trans. Faraday Soc. 34, 867 (1938).Google Scholar
  43. 29.
    K. Hauffe and C. Gensch, Z. Phys. Chem. 195, 116 (1950).Google Scholar
  44. 30.
    C. Wagner and K. Grünewald, Z. Phys. Chem. (B), 40, 455 (1938).Google Scholar
  45. 31.
    K. Hauffe, Oxidation of Metals, p. 171ff Plenum Press, New York (1965).Google Scholar
  46. 32.
    C. Gensch and K. Hauffe, Z. Phys. Chem. 196, 427 (1950).Google Scholar
  47. 33.
    H. Pfeiffer and K. Hauffe, Z. Metallkd. 43, 364 (1952).Google Scholar
  48. 34.
    J. Gundermann, K. Hauffe, and C. Wagner, Z. Phys. Chem. (B) 37, 148 (1937).Google Scholar
  49. 35.
    J. Gundermann and C. Wagner, Z. Phys. Chem. (B) 37, 155 (1937).Google Scholar
  50. 36.
    R. E. Carter and F. D. Richardson, J. Metals 6, 1244 (1954);Google Scholar
  51. 36a.
    R. E. Carter and F. D. Richardson, J. Metals 7, 336 (1955), with a theoretical supplement by C. Wagner.Google Scholar
  52. 37.
    F. S. Pettit and J. B. Wagner, Jr., J.Metals 13, 673 (1961).Google Scholar
  53. 38.
    J. O. Cope, Trans. Faraday Soc. 57, 493 (1961).Google Scholar
  54. 39.
    D. G. Thomas, J. Phys. Chem. Solids 3, 229 (1957).Google Scholar
  55. 40.
    J. W. Hickman and E. A. Gulbransen, J. Anal. Chem. 20, 158 (1948);Google Scholar
  56. 40a.
    V. I. Arkharov and G. P. Luschkin, Dokl. Akad. Nauk SSSR 83, 837 (1952).Google Scholar
  57. 41.
    C. Wagner, Z. Phys. Chem. (B) 21, 25 (1933);Google Scholar
  58. 41a.
    H. Rickert, Z. Phys. Chem. (NF) 23, 335 (1960);Google Scholar
  59. 41b.
    H. Rickert and C. Wagner, Z. Phys. Chem. (NF) 31, 32 (1961).Google Scholar
  60. 42.
    H. Rickert, Z. Phys. Chem. (NF) 23, 335 (1960);Google Scholar
  61. 42a.
    H. Rickert, Z. Phys. Chem. (NF) 24, 418 (1960);Google Scholar
  62. 42b..
    S. Mrowec and H. Rickert, Z. Phys. Chem. 32, 212 (1962).Google Scholar
  63. 43.
    S. Mrowec and T. Werber, Acta Met. 7, 696 (1959);Google Scholar
  64. 43a.
    J. Mikulski, S. Mrowec, I. Stronski, and T. Werber, Z. Phys. Chem. (NF) 22, 20 (1959).Google Scholar
  65. 44.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379 (1957).Google Scholar
  66. 45.
    J. H. Eriksen and K. Hauffe, Z. Phys. Chem. (NF) 59, 326 (1968).Google Scholar
  67. 46.
    O. Stasiw, Elektronen- und Ionenprozesse in Ionenkristallen, p. 35, Springer-Verlag, Berlin (1959).Google Scholar
  68. 47.
    K. Hauffe, Oxidation of Metals, pp. 109, 228ff, Plenum Press, New York (1965).Google Scholar
  69. 48.
    J. H. Eriksen and K. Hauffe, Z. Phys. Chem. (NF) 59, 332 (1968).Google Scholar
  70. 49.
    C. Ilschner-Gensch and C. Wagner, J. Electrochem. Soc. 105, 198 (1958).Google Scholar
  71. 50.
    P. J. Jorgensen, J. Chem. Phys. 37, 874(1962);Google Scholar
  72. 50a.
    P. J. Jorgensen, J. Electrochem. Soc. 110, 461 (1963).Google Scholar
  73. 51.
    H. H. Uhlig and A. E. Brenner, Acta Met. 3, 108 (1955).Google Scholar
  74. 52.
    U. R. Evans, The Corrosion and Oxidation of Metals, p. 833, Edward Arnold, London (1960).Google Scholar
  75. 53.
    K. Hauffe and P. Kofstad, Z. Elektrochem. 59, 399 (1955).Google Scholar
  76. 54.
    J. L. Meijering and M. L. Verheijke, Acta Met. 7, 331 (1959).Google Scholar
  77. 55.
    W. W. Smeltzer, R. R. Haering, and J. S. Kirkaldy, Acta Met. 9, 880 (1961).Google Scholar
  78. 56.
    P. Kofstad, High-Temperature Oxidation of Metals, p. 147ff, John Wiley, New York (1966).Google Scholar
  79. 57.
    J. P. Pemsler, J.Electrochem. Soc. 105, 315 (1958).Google Scholar
  80. 58.
    J. P. Pemsler, J. Electrochem. Soc. 106, 1067 (1959);Google Scholar
  81. 59.
    J. P. Pemsler, J. Electrochem. Soc. 111, 1185 (1964).Google Scholar
  82. 59.
    C. Wagner, Acta Met. 17, 99 (1969).Google Scholar
  83. 60.
    G. R. Wallwork, W. W. Smeltzer, and C. J. Rosa, Acta Met. 12, 409 (1964).Google Scholar
  84. 61.
    P. Kofstad, K. Hauffe, and H. Kjollesdal, Acta Chem. Scand. 12, 259 (1958).Google Scholar
  85. 62.
    P. Kofstad, P. B. Anderson, and O. J. Krudtaa, J. Less-Common Metals 3, 89 (1961).Google Scholar
  86. 63.
    R. E. Westerman, J. Electrochem. Soc. 111, 140 (1964).Google Scholar
  87. 64.
    D. L. Douglass and C. Wagner, J. Electrochem. Soc. 113, 671 (1966).Google Scholar
  88. 65.
    K. Hauffe, Werkstoffe & Korr. 22, 604 (1971).Google Scholar
  89. 66.
    T. E. Leontis and F. N. Rhines, Trans. AIME 166; 256 (1946);Google Scholar
  90. 66a.
    H. J. Svec and D. S. Gibbs, J. Electrochem. Soc. 104, 434 (1957).Google Scholar
  91. 67.
    K. Hauffe and H. Pfeiffer, Z. Metallkd. 44, 27 (1953).Google Scholar
  92. 68.
    W. W. Smeltzer, Acta Met. 8, 377 (1960).Google Scholar
  93. 69.
    F. Pettit, R. Yinger, and J. B. Wagner Jr., Acta Met. 8, 617 (1960).Google Scholar
  94. 70.
    F. S. Pettit and J. B. Wagner Jr., Acta Met. 12, 25, 41 (1964).Google Scholar
  95. 71.
    C. Wagner, Mimeographed Notes, Course 83.23, Kinetics in Metallurgy, MIT, Cambridge, Massachusetts, 1955.Google Scholar
  96. 72.
    E. T. Turkdogan, W. M. McKewan, and L. Zwell, J. Phys. Chem. 69, 327 (1965).Google Scholar
  97. 73.
    C. Wagner, Ber. Bunsenges. Phys. Chem. 70, 775 (1966).Google Scholar
  98. 74.
    S. Stotz, Ber. Bunsenges. Phys. Chem. 70, 769 (1966).Google Scholar
  99. 75.
    G. K. Boreskov, Disc. Faraday Soc. 41, 263 (1966).Google Scholar
  100. 76.
    C. Wagner, Corrosion Sci. 10, 641 (1970).Google Scholar
  101. 77.
    W. W. Webb, J. T. Norton, and C. Wagner, J. Electrochem. Soc. 103, 107 (1956).Google Scholar
  102. 78.
    B. J. Downey, J. C. Bermel, and P. J. Zimmer, Corrosion NACE 25, 502 (1969).Google Scholar
  103. 79.
    W. C. Leslie and M. G. Fontana, Trans. ASM 41, 1213 (1949).Google Scholar
  104. 80.
    J. L. Meijering and G. W. Rathenau, Metallurgia 42,167 (1950).Google Scholar
  105. 81.
    S. S. Brenner, J. Electrochem. Soc. 102, 16 (1955).Google Scholar
  106. 82.
    C. Wagner, J. Appl. Phys. 29, 295 (1958).Google Scholar
  107. 83.
    M. H. Davies, M. T. Simnad, and C. E. Birchenall, J. Metals 3, 889.Google Scholar
  108. 84.
    R. S. Gurnick and W. M. Baldwin Jr., Trans. ASM 42, 308 (1950).Google Scholar
  109. 85.
    E. H. Evans, C. A. Phalnikar, and W. M. Baldwin Jr., J.Electrochem. Soc. 103, 367 (1956).Google Scholar
  110. 86.
    J. Paidassi and A. Echeverria, Acta Met. 7, 293 (1959).Google Scholar
  111. 87.
    K. Hauffe and A. Rahmel, Z. Phys. Chem. 199, 152 (1952).Google Scholar
  112. 88.
    R. A. Meussner and C. E. Birchenall, Corrosion 13, 677 (1957).Google Scholar
  113. 89.
    C. Wagner and K. E. Zimerts, Acta Chem. Scand. 1, 574 (1947).Google Scholar
  114. 90.
    O. Kubaschewski and O. von Goldbeck, J. Inst. Metals 76 255 (1949).Google Scholar
  115. 91.
    C. Wagner, J. Electrochem. Soc. 99, 369 (1952);Google Scholar
  116. 91a.
    C. Wagner, J. Electrochem. Soc. 103, 627 (1956).Google Scholar
  117. 92.
    D. E. Thomas, J. Metals 3, 926 (1951).Google Scholar
  118. 93.
    R. A. Rapp, Acta Met. 9, 730 (1961).Google Scholar
  119. 94.
    F. Maak and C. Wagner, Werkstoffe & Korr 5, 273 (1961);Google Scholar
  120. 94a.
    F. Maak, Z. Metallkd. 52, 538, 545 (1961).Google Scholar
  121. 95.
    J. A. Sartell, S. Bendel, T. L. Johnston, and C. H. Li, Trans. ASM 50, 1047 (1958).Google Scholar
  122. 96.
    L. Cserski, S. Mrowec, and T. Werber, Arch. Hutnictwa 3, 37, 113 (1958).Google Scholar
  123. 97.
    A. Rahmel, Z. Elektrochem. 66, 363 (1962).Google Scholar
  124. 98.
    J. Moreau, Compt. Rend. 236, 95 (1953).Google Scholar
  125. 99.
    S. S. Brenner, J. Electrochem. Soc. 102, 7 (1955).Google Scholar
  126. 100.
    F. N. Rhines, Trans. AIME 137, 246 (1940);Google Scholar
  127. 100a.
    F. N. Rhines, J. Corrosion 4, 15 (1947).Google Scholar
  128. 101.
    C. Wagner, Z. Elektrochem. 63, 772 (1959).Google Scholar
  129. 102.
    C. Wagner, J. Appl. Phys. 29, 1295 (1958).Google Scholar
  130. 103.
    W. Kaiser and J. Breslin, J.Appl. Phys. 29, 1292 (1958).Google Scholar
  131. 104.
    E. T. Turkdogan, P. Grieveson, and L. S. Darken J.Metals 14, 521 (1962).Google Scholar
  132. 105.
    E. Peters, Corrosion Sci. 6, 235 (1966).Google Scholar
  133. 106.
    H. J. Engell and K. Hauffe, Metall. 6, 285 (1952).Google Scholar
  134. 107.
    T. B. Grimley and B. M. W. Trapnell, Proc. Roy. Soc. A 234, 405 (1956).Google Scholar
  135. 108.
    N. Cabrera and N. F. Mott, Rep. Progr. Phys. 12, 163 (1949).Google Scholar
  136. 109.
    H. J. Engell, K. Hauffe, and B. Ilschner, Z. Elektrochem. 58, 478 (1954).Google Scholar
  137. 110.
    E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc. 101, 128 (1954).Google Scholar
  138. 111.
    K. Hauffe, L. Pethe, R. Schmidt, and S. R. Morrison, J. Electrochem. Soc. 115, 456 (1968).Google Scholar
  139. 112.
    N. F. Mott, Trans. Faraday Soc. 43, 429 (1947).Google Scholar
  140. 113.
    C. Wagner, Corrosion Sci. 13, 23 (1973).Google Scholar
  141. 114.
    A. Many, Y. Goldstein, and N. B. Grover, Semiconductors, North-Holland Publishing Co., Amsterdam (1965), p. 128ff.Google Scholar
  142. 115.
    P. B. Weisz, J.Chem. Phys. 21, 1531 (1953).Google Scholar
  143. 116.
    S. R. Morrison,J.Catalysis 20, 110 (1971).Google Scholar
  144. 117.
    J. S. Anderson and K. J. Gallagher, Proc. 4th Int. Symp. on Reactivity of Solids, Elsevier, Amsterdam, 1961, p. 222.Google Scholar
  145. 118.
    P. Kofstad, J. Inst. Metals 91, 209 (1962/63).Google Scholar
  146. 119.
    K. Hauffe and B. Ilschner, Z. Elektrochem. 58, 382 (1954).Google Scholar
  147. 120.
    W. Scheuble, Z. Phys. 135, 125 (1953).Google Scholar
  148. 121.
    D. D. Eley and P. R. Wilkinson, Proc. Roy. Soc. A 254, 327 (1960).Google Scholar
  149. 122.
    M. A. H. Lanyon and B. M. W. Trappnell, Proc. Roy. Soc. A 227, 387 (1955).Google Scholar
  150. 123.
    C. T. Kirk Jr. and E. E. Huber, Surface Sci. 9, 217 (1968).Google Scholar
  151. 124.
    A. T. Fromhold Jr. and E. L. Cook, Phys. Rev. Letters 17, 1212 (1966).Google Scholar
  152. 125.
    H. H. Uhlig, Acta Met. 4, 541 (1956).Google Scholar
  153. 126.
    A. T. Fromhold Jr., Nature 200, 1309 (1963).Google Scholar
  154. 127.
    A. W. Swanson and H. H. Uhlig, J. Electrochem. Soc. 118, 1325 (1971).Google Scholar
  155. 128.
    A. Günterschulze and H. Betz, Z. Phys. 92, 367 (1934).Google Scholar
  156. 129.
    E. J. W. Verwey, Physica 2, 1059 (1935).Google Scholar
  157. 130.
    N. Cabrera, J. Terrien, and J. Hamon, Compt. Rend. 224, 1558 (1947).Google Scholar
  158. 131.
    K. Hauffe and S. R. Morrison, in High Temperature Gas-Metal Reactions in Mixed Environments, The Metallurgical Society of AIME, Cleveland (1973).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • Karl Hauffe
    • 1
  1. 1.Institute of Physical ChemistryUniversity of GöttingenWest Germany

Personalised recommendations