Advertisement

Abstract

This chapter deals essentially with the reaction between two solids A and B to form one or more product phases (A m B n ). During the course of this heterogeneous solid-solid reaction A m B n separates the reactants spatially. Therefore the progress of the reaction has to be attributed to a transport of the reactants across phase boundaries and through the reaction product.

Keywords

Phase Boundary Point Defect Diffusion Couple Reaction Layer Interdiffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).Google Scholar
  2. 2.
    W. Jost, Diffusion in Solids, Liquids and Gases, Academic, New York (1960).Google Scholar
  3. 3.
    H. Schmalzried, Festkörperreaktionen, Verlag Chemie, Weinheim (1971).Google Scholar
  4. 4.
    C. Wagner and W. Schottky, Z. Physik. Chem. B 11, 163 (1930).Google Scholar
  5. 5.
    F. A. Kröger and H. J. Vink, in Solid State Physics (F. Seitz and D. Turnbull, eds), Vol. 3, pp. 307ff., Academic, New York, (1956).Google Scholar
  6. 6.
    F. A. Kröger, F. Stieltjes, and H. J. Vink, Philips Res. Repts. 14, 557 (1959).Google Scholar
  7. 7.
    G. Brouwer, Philips Res. Repts. 9, 366 (1954).Google Scholar
  8. 8.
    W. Schottky, Z. Physik. Chem. B 29, 335 (1935).Google Scholar
  9. 9.
    A.B. Lidiard, in Handbuch der Physik (S. Flügge, ed.), Vol. XX, pp. 246ff., Springer Verlag, Berlin (1957).Google Scholar
  10. 10.
    H. Schmalzried, in Progress in Solid State Chemistry (H. Reiss, ed.), Vol. 2, pp. 265ff., Pergamon, Oxford (1965).Google Scholar
  11. 11.
    L. C. Walters and R. E. Grace, J. Phys. Chem. Solids 28, 239 (1967).CrossRefGoogle Scholar
  12. 12.
    G. Borchardt and H. Schmalzried, Z. Physik, Chem. NF 74, 265 (1971).CrossRefGoogle Scholar
  13. 13.
    J. R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, N.J. (1968).Google Scholar
  14. 14.
    J. P. Stark, Acta Met. 14, 228 (1966).CrossRefGoogle Scholar
  15. 15.
    L. S. Darken, Am. Inst. Min. Met. Engrs. Inst. Met. Div., Metals Techn. Publ. 15, pp. 2311, 2443 (1948).Google Scholar
  16. 16.
    C. Matano, Japan J. Phys. 8, 109 (1933).Google Scholar
  17. 17.
    F. Sauer and V. Freise, Z. Elektrochem. 66, 353 (1962).Google Scholar
  18. 18.
    Th. Heumann, Z. Physik. Chem. 201, 168 (1952).Google Scholar
  19. 19.
    C. Wagner, Acta Met. 17, 99 (1969).CrossRefGoogle Scholar
  20. 20.
    W. Rogalla and H. Schmalzried, Ber. Bunsenges. Physik. Chem. 72, 12 (1968).Google Scholar
  21. 21.
    C. D. Greskovich and V. S. Stubican, J. Phys. Chem. Solids 30, 909 (1969).CrossRefGoogle Scholar
  22. 22.
    F. S. Pettit, E. H. Randklev, and E. J. Feiten, J. Am. Ceram. Soc. 49, 199 (1966).CrossRefGoogle Scholar
  23. 23.
    H. Schmalzried, Z. Physik. Chem. NF 33, 129 (1962).CrossRefGoogle Scholar
  24. 24.
    G. Borchardt and H. Schmalzried, Z. Physik. Chem. NF 74, 265 (1971).CrossRefGoogle Scholar
  25. 25.
    A. A. Frost and R. G. Pearson, Kinetik und Mechanismus homogener chemischer Reaktionen, 2nd ed., Verlag Chemie, Weinheim (1964).Google Scholar
  26. 26.
    T. R. Waite, J. Chem. Phys. 32, 21 (1960).CrossRefGoogle Scholar
  27. 27.
    H. Schmalzried, Ber. Dtsch. Keram. Ges. 42, 11 (1965).Google Scholar
  28. 28.
    E. W. Gorter, Philips Res. Repts. 9, 295 (1954).Google Scholar
  29. 29.
    C. Wagner, Z. Physik. Chem. B 34, 309 (1936).Google Scholar
  30. 30.
    H. Schmalzried, in Reactivity of Solids (J. W. Mitchell, ed), pp. 551 ff., Wiley-Interscience, New York (1969).Google Scholar
  31. 31.
    H. Schmalzried, in Reactivity of Solids (G. M. Schwab, ed.), pp. 204ff., Elsevier, Amsterdam (1965).Google Scholar
  32. 32.
    G. Valensi, in Pittsburgh Int. Conf. on Surface Reactions, Corrosion p. 156 (1948).Google Scholar
  33. 33.
    K. Hauffe and W. Schottky, Halbleiterprobleme, Vol. V, p. 203, Vieweg, Braunschweig (1960).CrossRefGoogle Scholar
  34. 34.
    H.-G. Sockel, J. Crystal Growth 12, 106 (1972).CrossRefGoogle Scholar
  35. 35.
    A. D. Pelton, H. Schmalzried, and C. D. Greskovich, Ber. Bunsenges. Physik. Chem. 76, 543 (1972).Google Scholar
  36. 36.
    C. Wagner, J. Chem. Phys. 18, 1227 (1950).CrossRefGoogle Scholar
  37. 37.
    C. A. Duckwitz and H. Schmalzried, Z. Physik. Chem. NF 76, 173 (1971).CrossRefGoogle Scholar
  38. 38.
    W. Laqua, Doctorial Thesis, Technical University, Berlin (1971).Google Scholar
  39. 39.
    C. D. Greskovich, J. Am. Ceram. Soc. 53, 498 (1970).CrossRefGoogle Scholar
  40. 40.
    A. D. Pelton and T. H. Etsell, Acta Met. 20, 1269 (1972).CrossRefGoogle Scholar
  41. 41.
    K. Hauffe, Reaktionen in und an festen Stoffen, 2nd ed., Springer Verlag, Berlin (1966).CrossRefGoogle Scholar
  42. 42.
    J. S. Armijo, Mechanisms and kinetics of NiCr2O4 and CoCr2O4 spinel formation, Stanford Res. Inst. Rep. SR:PMD 7359 (1969).Google Scholar
  43. 43.
    K. Hardel and B. Strocka, Z. Physik. Chem. NF. 67, 8 (1969).CrossRefGoogle Scholar
  44. 44.
    H.-G. Sockel, Diplom-Thesis, University of Göttingen (1965).Google Scholar
  45. 45.
    W. Rogalla, Diplom-Thesis, University of Göttingen (1963).Google Scholar
  46. 46.
    M. L. Kronberg, Acta Met. 5, 507 (1957).CrossRefGoogle Scholar
  47. 47.
    C. W. Taylor, M. A. Dayananda, and R. E. Grace, Met. Trans. 1, 127 (1970).Google Scholar
  48. 48.
    J. S. Kirkaldy and L. C. Brown, Can. Met. Quart. 2, 89 (1965).Google Scholar
  49. 49.
    E. Fitzer, K. H. Köchling, and J. Schlichting, in Proc. Intern. Symp. Metal. Chem., Uxbridge University, England (1971). Google Scholar
  50. 50.
    G. V. Kidson, J. Nucl. Mater. 3, 21 (1960).CrossRefGoogle Scholar
  51. 51.
    Th. Heumann, Z. Metallic. 59, 455 (1968).Google Scholar
  52. 52.
    G. H. Jonker, Angew. Chem. 76, 175 (1964);CrossRefGoogle Scholar
  53. 52a.
    G. H. Jonker, Ber. Dtsch. Keram. Ges. 44, 265 (1967).Google Scholar
  54. 53.
    W. Jander, Z. Anorg. Allg. Chem. 163, 1 (1927).CrossRefGoogle Scholar
  55. 54.
    G. M. Schwab and J. Gerlach, Z. Physik. Chem. NF 56,121 (1967).CrossRefGoogle Scholar
  56. 55.
    R. E. Carter, J. Chem. Phys. 34, 2010 (1961);CrossRefGoogle Scholar
  57. 55a.
    R. E. Carter, J. Chem. Phys. 35, 1137 (1961).CrossRefGoogle Scholar
  58. 56.
    G. M. Schwab, in Reactivity of Solids (J. W. Mitchell, ed.), pp. 163 ff., Wiley-Interscience, New York (1969).Google Scholar
  59. 57.
    S. L. Blum and P. C. Li, J. Am. Ceram. Soc. 44, 611 (1961).CrossRefGoogle Scholar
  60. 58.
    H. Rickert and C. Wagner, Ber. Bunsenges. Physik. Chem. 66, 502 (1962).Google Scholar
  61. 59.
    C. Ilschner-Gensch and C. Wagner, J. Electrochem. Soc. 105, 198 (1958).CrossRefGoogle Scholar
  62. 60.
    J. H. Eriksen and K. Hauffe, Z. Physik. Chem. NF 59, 326 (1968).CrossRefGoogle Scholar
  63. 61.
    H.-G. Sockel and H. Schmalzried, in Materials Science Research (W. W. Kriegel and H. Palmour, eds.), Vol. III, pp. 61ff, Plenum, New York (1966).Google Scholar
  64. 62.
    W. Jost, Diffusion und chemische Reaktion in festen Stoffen, p. 180, Steinkopff Verlag, Dresden (1937).Google Scholar
  65. 63.
    C. Wagner, Z. Anorg. Allg. Chem. 236, 320 (1938).CrossRefGoogle Scholar
  66. 64.
    V. Leute, Z. Physik. Chem. NF 59, 91 (1968).CrossRefGoogle Scholar
  67. 65.
    C. Wagner, Trans. AIME 4, 214 (1952).Google Scholar
  68. 66.
    R. A. Oriani, Acta Met. 14, 84 (1966).CrossRefGoogle Scholar
  69. 67.
    J. M. Blakely and Che-Yu Li, Acta Met. 14, 279 (1966).CrossRefGoogle Scholar
  70. 68.
    W. Rogalla and H. Schmalzried, Ber. Bunsenges. Physik. Chem. 72, 615 (1968).Google Scholar
  71. 69.
    H. Frieser, G. Haase, and E. Klein, Grundlagen der photographischen Prozesse mit Silberhalogeniden, Akademische Verlagsgesellschaft, Frankfurt (1968).Google Scholar
  72. 70.
    C. Wagner, in Progress in Solid State Chemistry (H. Reiss and J. O. McCaldin, eds.), p. 1, Vol. 7, Pergamon, Oxford (1972).Google Scholar
  73. 71.
    C. Wagner, Ber. Bunsenges. Physik. Chem. 65, 581 (1961).Google Scholar
  74. 72.
    I. M. Lifshitz and V. V. Slezov, Soviet Phys.—JETP 35, 331 (1959).Google Scholar
  75. 73.
    F. S. Pettit and J. B. Wagner, Acta Met. 12, 35 (1964).CrossRefGoogle Scholar
  76. 74.
    H. Rickert and C. D. O’Brian, Z. Physik. Chem. NF 31, 71 (1962).CrossRefGoogle Scholar
  77. 75.
    J. D. Tretjakow and H. Schmalzried, Ber. Bunsenges. Physik. Chem. 69, 396 (1965).Google Scholar
  78. 76.
    O. Kubaschewski, Nat. Phys. Lab. DCS, Report 7, 1970.Google Scholar
  79. 77.
    R. Lindner and A. Akerström. Z. Physik. Chem. NF 6, 162 (1956).CrossRefGoogle Scholar
  80. 78.
    A. Morkel and H. Schmalzried, Z. Physik. Chem. NF 32, 76 (1962).CrossRefGoogle Scholar
  81. 79.
    R. Lindner, in Proc. 2nd Int. Conf. Peaceful Uses of Atomic Energy, Vol. 20, p. 116 (1958).Google Scholar
  82. 80.
    R. Sun, J. Chem. Phys. 28, 290 (1958).CrossRefGoogle Scholar
  83. 81.
    R. Lindner, Acta Chem. Scand. 6, 457 (1952).CrossRefGoogle Scholar
  84. 82.
    R. Lindner, Z. Naturforsch. 10a, 1027 (1955).Google Scholar
  85. 83.
    S. M. Klotsman Fiz. Met. i Metallov. 10, 733 (1960).Google Scholar
  86. 84.
    L. Himmel, R. F. Mehl, and C. E. Birchenall, Trans. AIME 197, 827 (1953).Google Scholar
  87. 85.
    H. Schmalzried, Z. Physik. Chem. NF 31, 184 (1962).CrossRefGoogle Scholar
  88. 86.
    H. H. Hohmann, Froc. Brit. Ceram. Soc. 8, 91 (1967).Google Scholar
  89. 87.
    W. Müller and H. Schmalzried, Ber. Bunsenges. Physik. Chem. 68, 270 (1964).Google Scholar
  90. 88.
    R. A. Rapp, A. Ezis, and G. J. Yurek, Met. Trans. 4, 1283 (1973).CrossRefGoogle Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • Hermann Schmalzried
    • 1
  1. 1.Institute for Theoretical Metallurgy and Applied Physical ChemistryTechnical University ClausthalGermany

Personalised recommendations