Advertisement

Decomposition Reactions

  • F. C. Tompkins

Abstract

The kinetic course of a solid-state decomposition is dominated by topochemical factors, specifically by the initiation of localized reaction at particular localities and the subsequent advancement of a reactive interface into the undecomposed reactant. This initiation occurs in the early stages of decomposition at, or very near, the external crystal surface at sites where crystallographic disorder exists. These localities have been identified as the intersection with the surface of edge and screw dislocations, in the few investigations which have been made to study the relationship between enhanced reactivity and surface disorder.(1) This correlation is generally explained by the lowering of the free energy of activation resulting from the difference of the entropy and enthalpy at emergent dislocations from their values at the ideal crystalline surface ; the magnitude of the decrease depends on the chemical nature of the reactant, its crystal structure, and such physical properties as its elastic moduli.

Keywords

Induction Period Decomposition Reaction Ammonium Perchlorate Nucleus Formation Product Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Herley, P. W. M. Jacobs, and P. W. Levy, Proc. Roy. Soc. A 318, 197 (1970).CrossRefGoogle Scholar
  2. 2.
    S. Roginskii and F. Schultz, Z. Phys. Chem. A 138, 21 (1928).Google Scholar
  3. 3.
    A. K. Galwey and P. W. M. Jacobs, Proc. Roy. Soc. A 254, 455 (1960).CrossRefGoogle Scholar
  4. 4.
    D. A. Young, Decomposition of Solids, Pergamon Press, Oxford (1966).Google Scholar
  5. 5.
    J. G. N. Thomas and F. C. Tompkins, Proc. Roy. Soc. A 210, 111, 550 (1951).Google Scholar
  6. 6.
    J. J. Gilman and R. E. Keith, Acta Cryst. 8, 1 (1960).Google Scholar
  7. 7.
    M. Sauvage and A. Authier, Phys. Stat. Sol. 12, K73 (1965).CrossRefGoogle Scholar
  8. 8.
    P. J. Herley, P. W. M. Jacobs, and P. W. Levy, Proc. Roy. Soc. A 318, 197 (1970); J. Chem. Soc. A 1971, 434.CrossRefGoogle Scholar
  9. 9.
    P. J. Herley and P. W. Levy,J. Chem. Phys. 49, 1493, 1500 (1968).CrossRefGoogle Scholar
  10. 10.
    P. J. Herley and P. W. Levy, Paper 6.1, 7th Int. Symp. Reactivity of Solids, 1972, Bristol.Google Scholar
  11. 11.
    S. Z. Roginsky, Adsorption and Katalyse an inhomogenen Oberflächen, Akademie Verlag, Berlin (1958).Google Scholar
  12. 12.
    A. Wischin, Proc. Roy. Soc. A 172, 314 (1939).CrossRefGoogle Scholar
  13. 13.
    Ch. Bagdassarian, Acta Physicochim. URSS 20, 441 (1945).Google Scholar
  14. 14.
    A. R. Allnatt and P. W. M. Jacobs, Can. J. Chem. 46, 111 (1968).CrossRefGoogle Scholar
  15. 15.
    J. G. N. Thomas and F. C. Tompkins, Proc. Roy. Soc. A 210,111, 550 (1951).Google Scholar
  16. 16.
    J. G. N. Thomas and F. C. Tompkins, J. Chem. Phys. 20, 662 (1952).CrossRefGoogle Scholar
  17. 17.
    E. Bowden and A. Yoffe, Fast Reactions in Solids, Butterworths, London (1958), p. 14.Google Scholar
  18. 18.
    M. Avrami, J. Chem. Physics 7, 1103 (1939);CrossRefGoogle Scholar
  19. 18a.
    M. Avrami, J. Chem. Physics 8, 212 (1940);CrossRefGoogle Scholar
  20. 18b.
    M. Avrami, J. Chem. Physics 9, 177 (1941).CrossRefGoogle Scholar
  21. 19.
    B. V. Erofeev, Compt. Rend. Acad. Sci., URSS 52, 5111 (1946).Google Scholar
  22. 20.
    A. K. Galwey and P. W. M. Jacobs, Proc. Roy. Soc. A 254, 455 (1960).CrossRefGoogle Scholar
  23. 21.
    P. J. Herley and P. W. Levy, J. Chem. Physics 49, 1500 (1968).CrossRefGoogle Scholar
  24. 22.
    P. W. M. Jacobs and Wee Lam Ng, Paper 6.2, 7th Int. Symp. Reactivity of Solids, 1972, Bristol.Google Scholar
  25. 23.
    P. W. M. Jacobs, in Materials Science Research, Vol. 4, Plenum Press, New York (1969), p. 45.Google Scholar
  26. 24.
    E. G. Prout and F. C. Tompkins, Trans. Faraday Soc. 40, 488 (1944).CrossRefGoogle Scholar
  27. 25.
    R. A. W. Hill, Trans. Faraday Soc. 54, 685 (1958).CrossRefGoogle Scholar
  28. 26.
    P. W. M. Jacobs and A. R. T. Kureisky, Trans. Faraday Soc. 58, 551 (1962).CrossRefGoogle Scholar
  29. 27.
    R. S. Bradley, Trans. Faraday Soc. 47, 630 (1951).CrossRefGoogle Scholar
  30. 28.
    R. Cooper and W. E. Garner, Proc. Roy. Soc. A 174, 487 (1940).CrossRefGoogle Scholar
  31. 29.
    J. Polanyi and E. Wigner, Z. Phys. Chem. A 139, 439 (1928).Google Scholar
  32. 30.
    R. S. Bradley, Phil. Mag. 12, 290 (1931).Google Scholar
  33. 31.
    F. Schultz and S. T. Dekker, J. Chem. Phys. 23, 2133 (1955).CrossRefGoogle Scholar
  34. 32.
    R. D. Shannon, Trans. Faraday Soc. 60, 1902 (1964).CrossRefGoogle Scholar
  35. 33.
    P. W. Levy and P. J. Herley, J. Phys. Chem. 75, 191 (1971).CrossRefGoogle Scholar
  36. 34.
    G. P. Owen, J. M. Thomas, and J. O. Williams, JCS Faraday Trans. I 68, 2356 (1972).CrossRefGoogle Scholar
  37. 35.
    J. N. Maycock and V. R. Pai, Proc. Roy. Soc. A 307, 303 (1968).CrossRefGoogle Scholar
  38. 36.
    P. W. M. Jacobs and Wee Lam Ng, Solid State Comm. 10, 779 (1972) ;CrossRefGoogle Scholar
  39. 36a.
    P. W. M. Jacobs and Wee Lam Ng, J. Phys. Chem. Solids, 33, 2031 (1972).CrossRefGoogle Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • F. C. Tompkins
    • 1
  1. 1.Department of ChemistryImperial College of Science and TechnologyLondonEngland

Personalised recommendations