High-Temperature Reactivity

  • Karl E. Spear

Abstract

The need for high-temperature materials and for a systematic understanding of their chemical behavior has increased enormously in the past three decades. New technologies based on nuclear energy, space exploration, and solid-state electronic devices have emphasized this need, as has the recently expanded search for new and more efficient energy sources and conversion devices. The first large organized effort to study and understand the chemistry of materials at high temperatures was initiated during the Manhattan Project some thirty years ago. The studies of Leo Brewer and co-workers* resulted in the birth of high-temperature chemistry as a major area of chemical research. Research in high-temperature chemistry has flourished and our knowledge of the chemical, thermodynamic, and kinetic properties of reactions at high temperatures has greatly increased in these last thirty years. Although information is still sparse in comparison to that for room-temperature reactions, a start has been made at categorizing the behavior and properties of these high-temperature systems.

Keywords

Titanium Sulfide Fluoride Uranium Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Quill (ed.), The Chemistry and Metallurgy of Miscellaneous Materials’. Thermodynamics (National Nuclear Energy Series IV, Vol. 19B), McGraw-Hill, New York (1950).Google Scholar
  2. 2.
    A. W. Searcy, Condensed state reactions and phase equilibria, in Int. Symp. on High Temperature Technology, p. 336, McGraw-Hill, New York (1960).Google Scholar
  3. 3.
    A. W. Searcy, Entropy of high-temperature physical and chemical processes, in Chemical and Mechanical Behavior of Inorganic Materials (A. W. Searcy, D. V. Ragone, and U. Colombo, eds.), Chapter 2, pp. 15–32, Wiley, New York (1970).Google Scholar
  4. 4.
    J. L. Margrave, High-temperature thermodynamics, in High-Temperature Materials and Technology (I. E. Campbell and E. M. Sherwood, eds.), pp. 21–55, Wiley, New York (1967).Google Scholar
  5. 5.
    J. L. Margrave and G. Mamantov, High-temperature reactions, in High-Temperature Materials and Technology (I. E. Campbell and E. M. Sherwood, ed.), pp. 78–127, Wiley, New York (1967).Google Scholar
  6. 6.
    G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer, Thermodynamics, 2nd Ed., McGraw-Hill, New York (1961).Google Scholar
  7. 7.
    L. S. Darken and R. W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York (1953).Google Scholar
  8. 8.
    O. Kubaschewski, E. L. Evans, and C. B. Alcock, Metallurgical Thermochemistry, 4th Ed., Pergamon, Oxford (1967).Google Scholar
  9. 9.
    K. E. Spear, H. Schäfer, and P. W. Gilles, Thermodynamics of vanadium borides, in Third Int. Symp. on High Temperature Technology, pp. 201–212, Butterworths, London (1969).Google Scholar
  10. 10.
    P. G. Wahlbeck and P. W. Gilles, Reinvestigation of the phase diagram for the system titanium-oxygen, J. Am. Ceram. Soc. 49(4), 180–183 (1966).CrossRefGoogle Scholar
  11. 11.
    JANAF Thermochemical Tables, 2nd Ed. (D. R. Stull and H. Prophet, project directors), National Standard Reference Data Series—National Bureau of Standards, 37, June 1971.Google Scholar
  12. 12.
    E. Rudy, Ternary phase equilibria in transition metal-boron-carbon-silicon systems, Part V. Compendium of phase diagram data, Wright-Patterson Air Force Materials Laboratory, Technical Report AFML-TR-65–2, Part V, May 1969.Google Scholar
  13. 13..
    Periodic Table of the Elements, Sargent-Welch Scientific Company, Skokie, Ill. (Copyright 1968).Google Scholar
  14. 14.
    J. L. White, Thermal expansion of high temperature materials, in Physiochemical Measurements at High Temperatures (J. O’M. Bockris, J. L. White, and J. D. MacKenzie, eds.), Appendix IV, pp. 344–352, Butterworths, London (1959).Google Scholar
  15. 15.
    R. Hultgren, R. L. Orr, and K. K. Kelley, Supplement to selected values of thermodynamic properties of metals and alloys, issued as loose-leaf data sheets from University of California, Berkeley, California (final mailing, June 30, 1972); to be published by the American Society for Metals.Google Scholar
  16. 16.
    T. B. Reed, Free Energy of Formation of Binary Compounds, MIT, Cambridge, Mass. (1971).Google Scholar
  17. 17.
    K. E. Spear, A. R. Olsen, and J. M. Leitnaker, Thermodynamic applications to (U, Pu)O2±x fuel systems, Oak Ridge National Laboratory Report, ORNL-TM-2494, April 1969.Google Scholar
  18. 18.
    O. Kubaschewski, Free-energy and phase-diagrams, in Proc. Symp. on Thermodynamics of Nuclear Materials, pp. 219–241, International Atomic Energy Agency, Vienna (1962).Google Scholar
  19. 19.
    P. W. Gilles, Thermodynamics of materials at high temperature and low pressure, in Applications of Fundamental Thermodynamics to Metallurgical Processes (G. R. Fitterer, ed.), pp. 281–298, Gordon and Breach, New York (1967).Google Scholar
  20. 20.
    P. W. Gilles, Vaporization processes of refractory substances, in Proc. Symp. on Thermodynamics of Nuclear Materials, pp. 401–415, International Atomic Energy Agency, Vienna (1962).Google Scholar
  21. 21.
    P. W. Gilles, Thermodynamics of vaporization of nuclear materials at high temperatures, in Proc. Symp. on Thermodynamics, Vol. 1, pp. 191–210, International Atomic Energy Agency, Vienna (1966).Google Scholar
  22. 22.
    P. W. Gilles, Vaporization processes, in The Characterization of High-Temperature Vapors (J. L. Margrave, ed.), Chapter 2, pp. 19–47, Wiley, New York (1967).Google Scholar
  23. 23.
    P. W. Gilles, High temperature chemistry, in Annual Review of Physical Chemistry, Vol. 12, pp. 355–380, Annual Reviews, Palo Alto, Calif. (1961).Google Scholar
  24. 24.
    K. E. Spear and J. M. Leitnaker, Formation of active carbon in twin-crucible studies of vanadium carbonitride solutions, J. Am. Ceram. Soc. 52(5), 257–262 (1969).CrossRefGoogle Scholar
  25. 25.
    K. E. Spear and J. M. Leitnaker, Equilibrium investigations of carbon-rich V(C, N) solutions, High Temp. Sci. 1(4), 401–411 (1969).Google Scholar
  26. 26.
    K. E. Spear and P. W. Gilles, Phase and structure relationships in the vanadium-boron system, High Temp. Sci. 1(1), 86–97 (1969).Google Scholar
  27. 27.
    K. E. Spear, P. W. Gilles, and H. Schäfer, Chemical transport reactions in the vanadium-silicon-oxygen system and the ternary phase diagram, J. Less-Common Metals 14, 69–75 (1968).CrossRefGoogle Scholar
  28. 28.
    A. Morozov, Vanadium oxides in iron-refining slags, Metallurg. 14, 15–27 (1939).Google Scholar
  29. 29.
    N. V. Sidgwick, The Chemical Elements and Their Compounds, Vol. 1, pg. 807, Oxford Univ. Press, Oxford (1950).Google Scholar
  30. 30.
    K. E. Spear, H. Schäfer, and P. W. Gilles, The vanadium-boron-nitrogen system, J. Less-Common Metals 14, 449–457 (1968).CrossRefGoogle Scholar
  31. 31.
    L. Brewer and H. Haraldsen, The thermodynamic stability of refractory borides,J. Electrochem. Soc. 102, 399–406 (1955).CrossRefGoogle Scholar
  32. 32.
    G. Brauer and W. D. Schnell, Carbidnitride des vanadiums,J. Less-Common Metals 7, 23–30 (1964).CrossRefGoogle Scholar
  33. 33.
    A. D. Mah, Heats and free energies of formation of vanadium nitride and vanadium carbide, U.S. Bureau of Mines Report of Investigations 6177, 1963.Google Scholar
  34. 34.
    K. E. Spear, J. M. Leitnaker, and T. B. Lindemer, Phase behavior of the U-V-C system and the thermodynamic properties and crystal structure of UVC2, High Temp. Sci. 2(2), 176–197 (1970).Google Scholar
  35. 35.
    A. W. Searcy, Enthalpy and predictions of solid-state reaction equilibria, in Chemical and Mechanical Behavior of Inorganic Materials (A. W. Searcy, D. V. Ragone, and U. Colombo, eds.), Chapter 3, pp. 33–55, Wiley, New York (1970).Google Scholar
  36. 36.
    A. W. Searcy, High-temperature reactions, in Survey of Progress in Chemistry (A. F. Scott, ed.), Vol. 1, pp. 35–79, Academic Press, New York (1963).Google Scholar
  37. 37.
    L. Brewer, L. A. Bromley, P. W. Gilles, and N. L. Lofgren, The thermodynamic properties of the halides, The Chemistry and Metallurgy of Miscellaneous Materials : Thermodynamics (L. L. Quill, ed.,), Paper 6, pp. 76–192, McGraw-Hill, New York (1950).Google Scholar
  38. 38.
    L. Brewer, High temperature chemistry; A pioneering field, in Inorganic Chemistry (Section of 16th Int. Congr. of Pure and Applied Chemistry, Paris), pp. 559–570, Butterworths, London (1958).Google Scholar
  39. 39.
    A. W. Searcy, High-temperature inorganic chemistry, in Progress in Inorganic Chemistry (F. A. Cotton, ed.), Vol. III, pp. 49–127, Interscience, New York (1962).CrossRefGoogle Scholar
  40. 40.
    L. Brewer and E. Brackett, The dissociation energies of gaseous alkali halides, Chem. Rev. 61(4), 425–432 (1961).CrossRefGoogle Scholar
  41. 41.
    N. D. Stout, R. W. Mar, and W. O. J. Boo, The high-temperature enthalpy and the enthalpy of fusion of boron by drop calorimetry, High Temp. Sci. 5, 241–251 (1973).Google Scholar
  42. 42.
    R. H. Flowers and E. G. Rauh, Studies of the equilibrium metal vapour pressures over the alkaline-earth carbides,J. Inorg. Nucl. Chem. 28, 1355–1365 (1966).CrossRefGoogle Scholar
  43. 43.
    R. L. Faircloth, R. H. Flowers, and F. C. W. Pummery, Vaporization of some rare-earth dicarbides, J. Inorg. Nucl. Chem. 30, 499–518 (1968).CrossRefGoogle Scholar
  44. 44.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, Selected values of chemical thermodynamic properties : Tables for the first thirty-four elements in the standard order of arrangement, National Bureau of Standards Technical Note 270–3, January 1968.Google Scholar
  45. 45.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, Selected values of chemical thermodynamic properties: Tables for elements 35 through 53 in the standard order of arrangement, National Bureau of Standards Technical Note 270–4, May 1969.Google Scholar
  46. 46.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, R. H. Schumm, and K. L. Churney, Selected values of chemical thermodynamic properties : Tables for elements 54 through 61 in the standard order of arrangement, National Bureau of Standards Technical Note 270–5, March 1971.Google Scholar
  47. 47.
    L. Brewer and G. M. Rosenblatt, Dissociation energies and free energy functions of gaseous monoxides, in Advances in High Temperature Chemistry (L. Eyring, ed.), Vol. 2, pp. 1–83, Academic, New York (1969).Google Scholar
  48. 48.
    L. Brewer, G. R. Somayajulu, and E. Brackett, Thermodynamic properties of gaseous metal dihalides, Chem. Rev. 63(2), 111–121 (1963).CrossRefGoogle Scholar
  49. 49.
    L. Brewer and G. M. Rosenblatt, Dissociation energies of gaseous metal dioxides, Chem. Rev. 61(3), 257–263 (1961).CrossRefGoogle Scholar
  50. 50.
    E. F. Westrum, Jr. and C. M. Barber, Uranium mononitride : Heat capacity and thermodynamic properties from 5° to 350°K, J. Chem. Phys. 45(2), 635–639 (1966).CrossRefGoogle Scholar
  51. 51.
    K. H. Stern and E. L. Weise, High temperature properties and decomposition of inorganic salts, Part 2. Carbonates, National Standard Data Reference Series— National Bureau of Standards 30, November 1969.Google Scholar
  52. 52.
    K. H. Stern and E. L. Weise, High temperature properties and decomposition of inorganic salts, Part 1. Sulfates, National Standard Data Reference Series— National Bureau of Standards 7 October 1966.Google Scholar
  53. 53.
    A. W. Searcy, Thermodynamics and inorganic materials, in Chemical and Mechanical Behavior of Inorganic Materials (A. W. Searcy, D. V. Ragone, and U. Colombo, eds.), Chapter 1, pp. 1–14, Wiley, New York (1970).Google Scholar
  54. 54.
    F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).Google Scholar
  55. 55.
    H. G. van Bueren, Imperfections in Crystals, North-Holland, Amsterdam (1961).Google Scholar
  56. 56.
    W. van Gool, Principles of Defect Chemistry of Crystalline Solids, Academic, New York (1966).Google Scholar
  57. 57.
    L. Brewer, The fusion and vaporization data of the halides, in The Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics (L. L. Quill, ed.), Paper 7, pp. 193–275, McGraw-Hill, New York (1950).Google Scholar
  58. 58.
    L. Brewer, Principles of high temperature chemistry, in Topics in Modern Inorganic Chemistry (W. O. Milligan, ed.), Chapter 3, 47–92, Robert A. Welch Foundation, Houston, Texas (1963).Google Scholar
  59. 59.
    L. Brewer, Undiscovered compounds, J. Chem. Ed. 35, 153–156 (1958).CrossRefGoogle Scholar
  60. 60.
    D. Cubicciotti, Discussions of papers in Session II, in Second Int. Symp. on High Temperature Technology, p. 554, Butterworths, Washington (1964).Google Scholar
  61. 61.
    G. DeMaria, Unfamiliar vapor molecules and their importance in high-temperature chemistry, in Chemical and Mechanical Behavior of Inorganic Materials (A. W. Searcy, D. V. Ragone, and U. Colombo, eds.), Chapter 5, pp. 81–105, Wiley, New York (1970).Google Scholar
  62. 62.
    J. Drowart, Mass spectrometric studies of the vaporization of inorganic substances at high temperatures, in Condensation and Evaporation of Solids (E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), pp. 255–310, Gordon and Breach, New York (1964).Google Scholar
  63. 63.
    F. T. Green and P. W. Gilles, New classes of high molecular weight boron sulfides, J. Am. Chem. Soc. 84(18), 3598–3599 (1962).CrossRefGoogle Scholar
  64. 64.
    F. T. Green and P. W. Gilles, High molecular weight boron sulfides; II. Identification, relative intensities, appearance potentials, and origins of the ions,J. Am. Chem. Soc. 86(19), 3963–3969 (1964).Google Scholar
  65. 65.
    W. A. Chupka, J. Berkowitz, and C. F. Giese, Vaporization of beryllium oxide and its reaction with tungsten, J. Chem. Phys. 30(3), 827–834 (1959).CrossRefGoogle Scholar
  66. 66.
    G. Verhaegen, F. E. Stafford, P. Goldfinger, and M. Ackerman, Correlation of dissociation energies of gaseous molecules and of heats of vaporization of solids : Part 1. Homonuclear diatomic molecules, Trans. Faraday Soc. 58(10), 1926–1938 (1962).CrossRefGoogle Scholar
  67. 67.
    R. Colin and P. Goldfinger, Correlation of dissociation energies of gaseous molecules and of heats of vaporization of solids : Part II Heteronuclear diatomic molecules, in Condensation and Evaporation of Solids (E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), pp. 165–179, Gordon and Breach, New York (1964).Google Scholar
  68. 68.
    J. Drowart, P. Goldfinger, and G. Verhaegen, Chemical bonding in high temperature species, in Third Int. Symp. on High Temperature Technology, pp. 159–172, Butterworths, London (1969).Google Scholar
  69. 69.
    J. Drowart, P. Coppens, and S. Smoes, Dissociation energy of the molecule TiO(g) and the thermodynamics of the system titanium-oxygen, J. Chem. Phys. 50, 1046–1048 (1969).CrossRefGoogle Scholar
  70. 70.
    P. W. Gilles, K. D. Carlson, H. F. Franzen, and P. G. Wahlbeck, High-temperature vaporization and thermodynamics of the titanium oxides. I. Vaporization characteristics of the crystalline phases, J. Chem. Phys. 46(7), 2461–2465 (1967).CrossRefGoogle Scholar
  71. 71.
    P. J. Hampson and P. W. Gilles, High-temperature vaporization and thermodynamics of the titanium oxides. VII. Mass spectrometry and dissociation energies of TiO(g) and TiO2(g), J. Chem. Phys. 55(8), 3712–3729 (1971).CrossRefGoogle Scholar
  72. 72.
    H. Schäfer, Chemical transport as a preparative procedure, in Preparative Methods in Solid State Chemistry (P. Hagenmuller, ed.), pp. 251–277, Academic, New York (1972).Google Scholar
  73. 73.
    H. Schäfer, Chemical Transport Reactions, Academic, New York (1964).Google Scholar
  74. 74.
    H. Schäfer, Thermodynamische Gesichtspunkte bei der Auswahl chemischer Transportvorgänge, J. Crystal Growth 9, 17–30 (1971).CrossRefGoogle Scholar
  75. 75.
    K. E. Spear, Chemical transport reactions : A relevant area of research, J. Chem. Ed. 49(2), 81–86 (1972).CrossRefGoogle Scholar
  76. 76.
    K. K. Kelley, Contribution to the data on theoretical metallurgy (reprint of Bulletins 383, 384, 393, and 406), U.S. Bureau of Mines Bulletin 601, 1962.Google Scholar
  77. 77.
    J. L. Margrave, Thermodynamic calculations on high temperature systems, in Physiochemical Measurements at High Temperatures (J. O’M. Bockris, J. L. White, and J. D. MacKenzie, eds.), Appendix V, pp. 353–368, Butterworths, London (1959).Google Scholar
  78. 78.
    C. E. Wicks and F. E. Block, Thermodynamic properties of 65 elements—Their oxides, halides, carbides, and nitrides, U.S. Bureau of Mines Bulletin 605, 1963.Google Scholar
  79. 79.
    D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements (Advances in Chemistry Series, No. 18), American Chemical Society, Washington, D.C. (1956).CrossRefGoogle Scholar
  80. 80.
    M. H. Rand and O. Kubaschewski, The Thermodynamic Properties of Uranium Compounds, Interscience, New York (1963).Google Scholar
  81. 81.
    M. H. Rand, Thermochemical properties, Atomic Energy Rev. 4 (Special Issue No. 1), 7–51 (1966).Google Scholar
  82. 82.
    F. L. Oetting, The chemical thermodynamic properties of plutonium compounds, Chem. Rev. 67, 261–297 (1967).CrossRefGoogle Scholar
  83. 83.
    R. E. Honig, Vapor pressure data for the elements, in The Characterization of High-Temperature Vapors (J. L. Margrave, ed.), Appendix A, pp. 475–494, Wiley, New York (1967).Google Scholar
  84. 84.
    A. N. Nesmeyanov, Vapour Pressure of the Elements, Academic, New York (1963).Google Scholar
  85. 85.
    M. S. Chandrasekharaiah, Volatilities of refractory inorganic compounds, in The Characterization of High-Temperature Vapors (J. L. Margrave, ed.), Appendix B, pp. 495–507, Wiley, New York (1967).Google Scholar
  86. 86.
    R. T. Grimley, Mass Spectrometry, in The Characterization of High-Temperature Vapors (J. L. Margrave, ed.), Chapter 8, pp. 195–243, Wiley, New York (1967).Google Scholar
  87. 87.
    M. G. Inghram and J. Drowart, Mass spectrometry applied to high temperature chemistry, in Int. Symp. on High Temperature Technology, pp. 219–240, McGraw-Hill, New York (1960).Google Scholar
  88. 88.
    R. C. Paule and J. L. Margrave, Free-evaporation and effusion techniques, in The Characterization of High-Temperature Vapors (J. L. Margrave, ed.), Chapter 6, pp. 130–151, Wiley, New York (1967).Google Scholar
  89. 89.
    R. F. Porter, High-temperature vapor species, in High-Temperature Materials and Technology (I.E. Campbell and E. M. Sherwood, eds.), Chapter 3, pp. 56–77, Wiley, New York (1967).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • Karl E. Spear
    • 1
  1. 1.Materials Research Laboratory and Material Sciences DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations