Factors Influencing the Reactivity of Solids

  • Walter P. Gomes
  • Willy Dekeyser


The study of factors which influence the reactivity of solids is of both practical and fundamental importance. Obviously, the control of reaction rates is a main practical objective in solid-state chemistry. In some cases the interest is in having reactivities as high as possible, such as with solid propellants or with heterogeneous catalysts. In other instances, on the contrary, the aim is to lower the reactivity; a well-known example here is the oxidation and corrosion of metals. In still other cases, such as in the manufacture of solid-state electronic devices, preferential reaction at chosen parts of a solid surface is wanted. As for the fundamental aspect, it is essentially by systematically studying the factors on which the reaction rate depends that the corresponding mechanism can be established. However, our purpose in this chapter is not to show how reaction mechanisms are derived, but to try and draw a generalized picture accounting for the effects of various factors on solid-state reactivity. Consequently, the accepted mechanisms, whenever available, will be used as a basis for discussing the action of factors which influence the reaction rates.


Oxygen Pressure Product Layer Alkali Halide Ammonium Perchlorate Crystal Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Forty, Observation of the decomposition of crystals of lead iodide in the electron microscope, Phil. Mag. 5, 787–797 (1960).CrossRefGoogle Scholar
  2. 2.
    P. W. M. Jacobs and F. C. Tompkins, in Chemistry of the Solid State (W. E. Garner, ed.), p. 185, Butterworths, London (1955).Google Scholar
  3. 3.
    P. W. M. Jacobs, in Proc. 6th Int. Symp. on the Reactivity of Solids (J. W. Mitchell et al., eds.), pp. 207–218, Wiley-Interscience, New York (1969).Google Scholar
  4. 4.
    P. G. Fox and J. Soria-Ruiz, Dislocations and the thermal reactivity of calcite, Proc. Roy. Soc. (London) A314, 429–441 (1970).Google Scholar
  5. 5.
    J. M. Thomas and J. O. Williams, in Progress in Solid State Chemistry (H. Reiss and J. O. McCaldin, eds.), Vol. 6, pp. 119–154, Pergamon, Oxford (1971).Google Scholar
  6. 6.
    P. W. M. Jacobs and H. M. Whitehead, Decomposition and combustion of ammonium Perchlorate, Chem. Rev. 69, 551–590 (1969).CrossRefGoogle Scholar
  7. 7.
    P. J. Herley, P. W. Levy, and P. W. M. Jacobs, A photomicrographic and electron miscroscopy study of nucleation in ammonium Perchlorate, Proc. Roy. Soc. (London) A318, 197–211 (1970).Google Scholar
  8. 8.
    F. S. Stone, in Proc. 4th Int. Symp. on the Reactivity of Solids (J. H. De Boer et al., eds.), p. 18, Elsevier, Amsterdam (1961).Google Scholar
  9. 9.
    J. S. Anderson and B. G. Hyde, On the possible role of dislocations in generating ordered and disordered shear structures, J. Phys. Chem. Solids 28, 1393–1408 (1967).CrossRefGoogle Scholar
  10. 10.
    A. D. Wadsley, in Proc. 6th Int. Symp. on the Reactivity of Solids (J. W. Mitchell et al., eds.), pp. 1–15, Wiley-Interscience, New York (1969).Google Scholar
  11. 11.
    M.N. Colpaert, P. Clauws, L. Fiermans, and J. Vennik. Thermal and low energy electron bombardment induced oxygen loss of V2O5 single crystals: transition into V6O13, Surface Science 36, 513–525 (1973).CrossRefGoogle Scholar
  12. 12.
    E. Gillis, Sur les relations entre les structures du V2O5 et du V12O26, Compt. Rend. 258, 4765–4768 (1964).Google Scholar
  13. 13.
    E. Gillis and G. Remaut, Sur la non-stoechiométrie inhomogène dans le pentoxyde de vanadium, Compl. Rend. 262, 1215–1218 (1966).Google Scholar
  14. 14.
    J. Malinovski, Latent image formation in silver halides, Photo. Sci. Eng. 14, 112–121 (1970).Google Scholar
  15. 15.
    S. R. Morrison, Iron cyanide as a surface state to prevent ZnO photolysis in vacuum, J. Vacuum Sci. Techn. 7, 84–89 (1970).CrossRefGoogle Scholar
  16. 16..
    M. D. Cohen and G. M. J. Schmidt, Topochemistry, Part I, A survey, J. Chem. Soc. 1964, 1996–2000.Google Scholar
  17. 17.
    M. D. Cohen, G. M. J. Schmidt, and F. I. Sonntag, Topochemistry, Part II, The photochemistry of trans-cinnamic acids, J. Chem. Soc. 1964, 2000–2013.Google Scholar
  18. 18.
    J. M. Thomas and J. O. Williams, Photochemical transformations in crystalline anthracenes: The importance of defects, Chem. Comm. 1967, 432–433.Google Scholar
  19. 19.
    J. S. Sheasby, The oxidation of niobium in the temperature range 450°-720°C, J. Electrochem. Soc. 115, 695–700 (1968).CrossRefGoogle Scholar
  20. 20.
    E. J. Feiten, High-temperature oxidation of Fe-Cr base alloys with particular reference to Fe-Cr-Y alloys, J. Electrochem. Soc. 108, 490–495 (1961).CrossRefGoogle Scholar
  21. 21.
    K. Hauffe, Reaktionen in und an festen Stoffen, Springer-Verlag, Berlin (1966).CrossRefGoogle Scholar
  22. 22.
    C. Wagner, Beitrag zur Theorie des Anlaufvorganges II, Z. physik. Chem. (B) 32, 447–462 (1936).Google Scholar
  23. 23.
    K. Hauffe and Ch. Gensch, Über die Bromierungsgeschwindigkeit von Silber-Cadmium-Legierungen, Z. physik. Chem. 195, 116–128 (1950).Google Scholar
  24. 24.
    C. Gensch and K. Hauffe, Über die Bromierungsgeschwindigkeit einiger Silberlegierungen, Z. physik. Chem. 195, 386–393 (1950).Google Scholar
  25. 25.
    J. H. Eriksen and K. Hauffe, Beeinflussung der Oxydationsgeschwindigkeit von Metallen mit ionenleitenden Deckschichten in einer elektrochemischen Kette, I. Die Bromierung von Silber, Z. physik. Chem. NF 59, 326–331 (1968).Google Scholar
  26. 26.
    C. Wagner and K. Grünewald, Beitrag zur Theorie des Anlaufvorganges III, Z. physik. Chem. (B) 40, 455–475 (1938).Google Scholar
  27. 27.
    Ch. Gensch and K. Hauffe, Über die Oxydationsgeschwindigkeit von Zinklegierungen, Z. physik. Chem. 196, 427–437 (1951).Google Scholar
  28. 28.
    W. Feitknecht, Über die Oxydation des Kupfers bei hoher Temperatur, Z. Elektrochem. 35, 142–151 (1929).Google Scholar
  29. 29.
    W. E. Boggs, R. H. Kachik, and G. E. Pellissier, The effect of oxygen pressure on the oxidation of zone-refined iron, J. Electrochem. Soc. 112, 539–546 (1965).CrossRefGoogle Scholar
  30. 30.
    W. E. Boggs, R. H. Kachik, and G. E. Pellissier, The effect of crystallographic orientation and oxygen pressure on the oxidation of iron, J. Electrochem. Soc. 114, 32–39 (1967).CrossRefGoogle Scholar
  31. 31.
    P. J. Jorgenson, Effect of an electric field on silicon oxidation, J. Chem. Phys. 37, 874–877 (1962).CrossRefGoogle Scholar
  32. 32.
    D. O. Raleigh, Transport processes in the thermal oxidation of silicon, J. Electrochem. Soc. 113, 782–788 (1966).CrossRefGoogle Scholar
  33. 33.
    P. J. Jorgenson, Comments on the paper “Transport processes in the thermal oxidation of silicon,” J. Electrochem. Soc. 114, 820–821 (1967).CrossRefGoogle Scholar
  34. 34.
    D. O. Raleigh, Reply to comments on the paper “Transport processes in the thermal oxidation of silicon,” J. Electrochem. Soc. 115, 111–112 (1968).CrossRefGoogle Scholar
  35. 35.
    F. W. Young, Jr., J. V. Cathcart, and A. T. Gwathmey, The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light, Acta Met. 4, 145–152 (1956).CrossRefGoogle Scholar
  36. 36.
    A. T. Gwathmey and K. R. Lawless, in The Surface Chemistry of Metals and Semiconductors (H. C. Gatos, ed.), pp. 483–521, Wiley, New York (1960).Google Scholar
  37. 37.
    K. R. Lawless and A. T. Gwathmey, The structure of oxide films on different faces of a single crystal of copper, Acta Met. 4, 153–163 (1956).CrossRefGoogle Scholar
  38. 38.
    P. B. Sewell and M. Cohen, The oxidation of iron single crystals around 200°C, J. Electrochem. Soc. 111, 501–508 (1964).CrossRefGoogle Scholar
  39. 39.
    M. J. Graham, S. I. Ali, and M. Cohen, Low temperature oxidation (24° to 200°C) and krypton adsorption studies on polycrystalline and single crystal iron surfaces, J. Electrochem. Soc. 117, 513–516 (1970).CrossRefGoogle Scholar
  40. 40.
    W. P. Gomes, Reduction of silver ions incorporated in alkali halide crystals by hydrogen, Trans. Faraday Soc. 59, 1648–1654 (1963).CrossRefGoogle Scholar
  41. 41.
    W. P. Gomes, Reaction between hydrogen and potassium chloride crystals doped with nitrite and nitrate, Trans. Faraday Soc. 62, 1249–1256 (1966).CrossRefGoogle Scholar
  42. 42.
    W. P. Gomes, The influence of vacancies on the reduction of silver ions in silver doped alkali halides, J. Phys. Chem. Solids 24, 1671–1673 (1963).CrossRefGoogle Scholar
  43. 43.
    R. Hilsch, Über die Diffusion und Reaktion von Wasserstoff in KBr-Kristallen, Ann. Physik 29, 407–420 (1937).CrossRefGoogle Scholar
  44. 44.
    W. P. Gomes, Réactions partielles et complètes dans les cristaux de chlorure de potassium dopés, Compt. Rend. 265, 1445–1448 (1967).Google Scholar
  45. 45.
    W. Van der Vorst and W. Dekeyser, Luminescence of decorated dislocations, Phil. Mag. 1, 882–884 (1956).CrossRefGoogle Scholar
  46. 46.
    S. Amelinckx, W. Maenhout-Van der Vorst, and W. Dekeyser, Cavity formation in nitrate-doped alkali halides, Acta Met. 7, 8–17 (1959).CrossRefGoogle Scholar
  47. 47.
    W. Poch, in Proc. 6th Int. Symp. on the Reactivity of Solids (J. W. Mitchell et al., eds.), pp. 827–833, Wiley-Interscience, New York (1969).Google Scholar
  48. 48.
    R. Fricke, in Handbuch der Katalyse (G. M. Schwab, ed.), Vol. 4, pp. 1–150, Springer-Verlag, Wien (1943).Google Scholar
  49. 49.
    J. A. Hedvall, Einführung in die Festkörperchemie, pp. 183–196, F. Vieweg und Sohn, Braunschweig (1952).Google Scholar
  50. 50.
    H. Schmalzried, Reaktionsmechanismen der Spinellbildung im festen Zustand, Z. physik. Chem. JVF 33, 111–128 (1962).CrossRefGoogle Scholar
  51. 51.
    G.-M. Schwab, M. Kohler-Rau, and S. Ehrenstorfer, in Proc. 4th Int. Symp. on the Reactivity of Solids (J. H. De Boer, ed.), pp. 392–399, Elsevier, Amsterdam (1961).Google Scholar
  52. 52.
    J. A. Altham, J. H. McLain, and G.-M. Schwab, The reactivity of nickel oxide, Z.physik. Chem. NF 74, 139–145 (1971).CrossRefGoogle Scholar
  53. 53.
    G.-M. Schwab and J. Gerlach, Die Reaktion von Germanium mit Molybdän (VI) oxid im festen Zustand, Z. physik. Chem. NF 56,121–132(1967).CrossRefGoogle Scholar
  54. 54.
    A. J. E. Welch, in Chemistry of the Solid State (W. E. Garner, ed.), p. 309, Butterworths, London (1955).Google Scholar
  55. 55.
    T. Freund and W. P. Gomes, Electrochemical methods for investigating catalysis by semiconductors, Catalysis Rev. 3, 1–36 (1969).CrossRefGoogle Scholar
  56. 56.
    H. Genscher and W. Mindt, The mechanism of the decomposition of semiconductors by electrochemical oxidation and reduction, Electrochim. Acta 13, 1329–1341 (1968).CrossRefGoogle Scholar
  57. 57.
    H. Gerischer, in Advances in Electrochemistry and Electrochemical Engineering (P. Delahay, ed.), Vol. 1, pp. 139–232, Interscience, New York (1961).Google Scholar
  58. 58.
    V. A. Myamlin and Yu. V. Pleskov, Electrochemistry of Semiconductors, Plenum, New York (1967).Google Scholar
  59. 59.
    H. C. Gatos and M. C. Lavine, Etching and inhibition of the (111) surfaces of the III-V intermetallic compounds: InSb,J. Phys. Chem. Solids 14, 169–174 (1960).CrossRefGoogle Scholar
  60. 60.
    E. P. Warekois, M. C. Lavine, A. N. Mariano, and H. C. Gatos, Crystallographic polarity in the II–VI compounds, J. Appl. Phys. 33, 690–696 (1962); erratum in J. Appl. Phys. 37, 2203 (1966).CrossRefGoogle Scholar
  61. 61.
    A. N. Mariano and R. E. Hanneman, Crystallographic polarity of ZnO crystals, J. Appl. Phys. 34, 384–387 (1963).CrossRefGoogle Scholar
  62. 62.
    G. Heiland, P. Kunstmann, and H. Pfister, Polare Eigenschaften von Zinkoxyd-Kristallen, Z. Physik 176, 485–497 (1963).CrossRefGoogle Scholar
  63. 63.
    L. D. Locker and P. L. de Bruyn, The kinetics of dissolution of II–VI semiconductor compounds in nonoxidizing acids,J. Electrochem. Soc. 116, 1659–1664 (1969).CrossRefGoogle Scholar
  64. 64.
    G. Simkovich and J. B. Wagner, The influence of point defects on the kinetics of dissolution of semiconductors, J. Electrochem. Soc. 110, 513–516 (1963).CrossRefGoogle Scholar
  65. 65.
    H. C. Gatos, in The Surface Chemistry of Metals and Semiconductors (H. C. Gatos, ed.), pp. 381–406, Wiley, New York (1960).Google Scholar
  66. 66.
    J. H. Braun, Photosensitive etching of silicon, J. Electrochem. Soc. 108, 588–589 (1961).CrossRefGoogle Scholar
  67. 67.
    K. Hauffe, J. Range, and K. Volenik, Einige Experimente über die Auflösung von Zinkoxideinkristallen in wässrigen Lösungen, Ber. Bunsenges. physik. Chem. 74, 286–291 (1970).Google Scholar
  68. 68.
    R. L. Fleischer and R. M. Walker, Etchable line defects in crystals are not necessarily dislocations, Phil. Mag. 13, 1083–1084 (1966).CrossRefGoogle Scholar
  69. 69.
    D. A. Vermiliyea, On the role of lattice vacancies in metal dissolution,J. Electrochem. Soc. 115, 162–163 (1968).CrossRefGoogle Scholar
  70. 70.
    A. S. Parasnis, in Modern Aspects of Solid State Chemistry (C. N. R. Rao, ed.), pp. 447–464, Plenum, New York (1970).CrossRefGoogle Scholar
  71. 71.
    J. W. Faust, Jr., in The Surface Chemistry of Metals and Semiconductors (H. C. Gatos, ed.), pp. 151–173, Wiley, New York (1960).Google Scholar
  72. 72.
    S. Amelinckx, The Direct Observation of Dislocations (Solid State Physics, Suppl. 6), Academic, New York (1964).Google Scholar
  73. 73.
    J. W. Faust, Jr., in Proc. 6th Int. Symp. on the Reactivity of Solids (J. W. Mitchell et al., eds.), pp. 337–343, Wiley-Interscience, New York (1969).Google Scholar
  74. 74.
    N. Cabrera, in The Surface Chemistry of Metals and Semiconductors (H. C. Gatos, ed.), pp. 71–81, Wiley, New York (1960).Google Scholar
  75. 75.
    W. Schaarwächter, Zum Mechanismus der Versetzungsätzung, I. Die Bildung zweidimensionaler Lochkeime an den Enden von Versetzungslinien, Phys. Stat. Sol. 12, 375–382 (1965).CrossRefGoogle Scholar
  76. 76.
    W. Schaarwächter and K. Lücke, Der Einfluss der Versetzungsstruktur auf die Auflösung von Kristallen, Z. physik. Chem. NE 53, 367–386 (1967).CrossRefGoogle Scholar
  77. 77.
    O. Beeck, Hydrogenation catalysts, Disc. Faraday Soc. 8, 118–128 (1950).CrossRefGoogle Scholar
  78. 78.
    J. H. Sinfelt and D. J. C. Yates, Studies of ethane hydrogenolysis over group VIII metals: Supported osmium and iron,J. Catalysis 10, 362–367 (1968).CrossRefGoogle Scholar
  79. 79.
    G. Reinäcker and J. Völter, Zerfall von Hydrazindampf an Kupfer-Einkristallen, Z. Anorg. Allg. Chem. 302, 292–298 (1959).CrossRefGoogle Scholar
  80. 80.
    G. Reinäcker and J. Völter, Zerfall des Amiesensäuredampfes an Kupfer-Ein-und Polykristallen, Z. Anorg. Allg. Chem. 302, 299–305 (1959).CrossRefGoogle Scholar
  81. 81.
    A. T. Gwathmey and R. E. Cunningham, The influence of crystal face in catalysis, Adv. Catalysis 10, 57–95 (1958).CrossRefGoogle Scholar
  82. 82.
    H. M. C. Sosnovski, The catalytic activity of silver crystals of various orientation after bombardment with positive ions, J. Phys. Chem. Solids 10, 304–310 (1959).CrossRefGoogle Scholar
  83. 83.
    J. Bagg, H. Jaeger, and J. V. Sanders, The influence of defects and surface structure on the catalytic activity of silver films, J. Catalysis 2, 449–464 (1963).CrossRefGoogle Scholar
  84. 84.
    H. Jaeger, The influence of orientation and crystal defects on the catalytic activity of silver, J. Catalysis 9, 237–250 (1967).CrossRefGoogle Scholar
  85. 85.
    E. Bauer, in Techniques of Metal Research (R. F. Bunshah, ed.), Vol. 2, Part 2, pp. 559–639, Wiley-Interscience, New York (1969).Google Scholar
  86. 86.
    R. M. Dell, F. S. Stone, and P. F. Tiley, The decomposition of nitrous oxide on cuprous oxide and other oxide catalysts, Trans. Faraday Soc. 49, 201–209 (1953).CrossRefGoogle Scholar
  87. 87.
    F. A. Kröger, The Chemistry of Imperfect Crystals, p. 968, North-Holland, Amsterdam (1964).Google Scholar
  88. 88.
    J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Chapters 5 and 6, Academic London (1967).Google Scholar
  89. 89.
    K. M. Sancier, S. R. Morrison, and H. U. D. Wiesendanger, Catalytic and chemical reaction rates of hydrogen atoms with germanium,J. Catalysis 5, 361–365 (1966).CrossRefGoogle Scholar
  90. 90.
    G. Ertl, Kinetik des Zerfalls von N2O an Germanium-Spaltflächen, Z. physik. Chem. NF 50, 46–59 (1966).CrossRefGoogle Scholar
  91. 91.
    G. Ertl and T. Giovanelli, Katalytischer Zerfall von Wasser an reinen Germaniumoberflächen, Ber. Bunsenges. physik. Chem. 72, 74–80 (1968).Google Scholar
  92. 92.
    S. R. Morrison and T. Freund, Chemical role of holes and electrons in ZnO photocatalysis,J. Chem. Phys. 47, 1543–1551 (1967).CrossRefGoogle Scholar
  93. 93.
    V. J. Lee, Electrons and holes as energy-transport agents in catalysis on semiconductors, Part I, J. Catalysis 17, 178–189 (1970).CrossRefGoogle Scholar
  94. 94.
    W. M. H. Sachtler and N. H. De Boer, in Proc. 3rd Int. Congress on Catalysis (W. M. H. Sachtler et al., eds.) pp. 252–265, North-Holland, Amsterdam (1965).Google Scholar
  95. 95.
    G. K. Boreskov, Forms of oxygen bonds on the surface of oxidation catalysts, Disc. Faraday Soc. 41, 263–276 (1966).CrossRefGoogle Scholar
  96. 96.
    K. Klier, Oxidation-reduction potentials and their relation to the catalytic activity of transition metal oxides,J. Catalysis 8, 14–21 (1967).CrossRefGoogle Scholar
  97. 97.
    P. Delahay, Double Layer and Electrode Kinetics, Wiley-Interscience, New York (1965).Google Scholar
  98. 98.
    S. Srinivasan, H. Wroblowa, and J. O’M Bockris, Electrocatalysis, Adv. Catalysis 17, 351–418 (1967).CrossRefGoogle Scholar
  99. 99.
    B. E. Conway and J. O’M Bockris, Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal, J. Chem. Phys. 26, 532–541 (1957).CrossRefGoogle Scholar
  100. 100.
    J. O’M Bockris, R. J. Mannan, and A. Damjanovic, Dependence of the rate of electrodic redox reactions on the substrate,J. Chem. Phys. 48, 1898–1904 (1968).CrossRefGoogle Scholar
  101. 101.
    J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, p. 436, Academic, London (1967).Google Scholar
  102. 102.
    H. Gerischer, Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis, Surface Sci. 18, 97–122 (1969).CrossRefGoogle Scholar
  103. 103.
    T. Freund, Electron injection into zinc oxide, J. Phys. Chem. 73, 468–469 (1969).CrossRefGoogle Scholar
  104. 104.
    R. A. L. Vanden Berghe and W. P. Gomes, A comparative study of electron injection into ZnO, CdS and CdSe single crystal anodes, Ber. Bunsenges. physik. Chem. 76, 481–485 (1972).Google Scholar
  105. 105.
    W. P. Gomes, Electrochemical processes at the V2O5 surface under anodic bias, Surface Sci. 19, 172–180 (1970).CrossRefGoogle Scholar
  106. 106.
    S. R. Morrison, Electron capture by ions at the ZnO/solution interface, Surface Sci. 15, 363–379 (1969).CrossRefGoogle Scholar
  107. 107.
    W. P. Gomes, T. Freund, and S. R. Morrison, Chemical reactions involving holes at the zinc oxide single crystal anode, J. Electrochem. Soc. 115, 818–823 (1968).CrossRefGoogle Scholar
  108. 108.
    H. Gerischer and I. Mattes, Wasserstoffabscheidung und Ablauf von Redoxreaktionen an Galliumarsenide, Z. physik. Chem. NF 49, 112–126 (1966).CrossRefGoogle Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • Walter P. Gomes
    • 1
  • Willy Dekeyser
    • 1
  1. 1.Laboratorium voor Kristallografie en Studie van de Vaste StofRijksuniversiteit GentGentBelgium

Personalised recommendations